This implements a new plugin for Dynamic (EEPROM-stored) macros. Unlike the
Macros plugin, these macros are stored in EEPROM, and can't run custom code,
only the steps outlined in the Macros documentation.
The plugin provides two Focus commands (`macros.map` and `macros.trigger`) to
get or set the dynamic macros, and to trigger one without having to place them
on the keymap.
Fixes#370.
Signed-off-by: Gergely Nagy <algernon@keyboard.io>
The correct KeyAddr type is not known to class ATMegaKeyboard
as key matrix dimentions (matrix_rows/matrix_columns) and
type KeyAddr are only defined in derived hardware classes. To deal with
this problem, some of the KeyAddr related methods are moved to
derived hardware classes.
The necessary boilerplate code is synthesized through a macro
ATMEGA_KEYBOARD_MATRIX_ACCESS_METHODS that is automatically included
by all derived classes of class ATMegaKeyboard through the already used
macro ATMEGA_KEYBOARD_CONFIG.
Signed-off-by: Florian Fleissner <florian.fleissner@inpartik.de>
By forcing an explicit type conversion between
two template class instances of template
MatrixAddr<...>, we prevent undesired implicit
construction of the wrong MatrixAddr type.
Before this change, the following would have been possible
typedef MatrixAddr<5, 5> KeyAddr;
void f(KeyAddr k) {} // uses MatrixAddr<5, 5>
void g() {
typedef MatrixAddr<0, 0> KeyAddr; // Stupid but possible
f(KeyAddr(1, 12)); // Would instantiate MatrixAddr<0, 0> and
// implicitly convert it to MatrixAddr<5, 5>
}
With this commit, the compiler will emit an error and explicit type
conversion is required.
typedef MatrixAddr<5, 5> KeyAddr1;
typedef MatrixAddr<2, 2> KeyAddr2;
void f(KeyAddr1 k) {} // uses MatrixAddr<5, 5>
void g() {
f(KeyAddr1(KeyAddr2(1, 1)); // Now an explicit type conversion is
// required.
}
This commit also introduces a compile time check that prevents
conversion from a matrix type with greater extension to one with
smaller extension.
Signed-off-by: Florian Fleissner <florian.fleissner@inpartik.de>
The "new" code we've backed out caused all key events to be about key
0,0. I suspect that this is GCC doing something crazy with that one
function. I don't understand what's going on. @noseglasses: any idea?
This introduces two new macro action steps: `MACRO_ACTION_STEP_TAP_SEQUENCE`,
and `MACRO_ACTION_STEP_TAP_CODE_SEQUENCE`. Both of these will tap everything
that follows up to a terminating zero (or in case of the first, double zeroes).
The purpose of these new steps is to allow one to store longer sequences of
tapped input in a more compact manner, without having to prefix each step with
an action.
Signed-off-by: Gergely Nagy <algernon@keyboard.io>
In `refreshAt()`, we want to use the key address, instead of the LED address.
`LEDControl` will turn the key address into a LED address itself anyway. This
not only makes the code a tiny bit more efficient, but it also fixes
`refreshAt()`, which was refreshing the wrong key since the conversion to
`KeyAddr`.
Signed-off-by: Gergely Nagy <algernon@keyboard.io>
In order for the plugin to work without having to switch layers once, it needs
to scan the keymap for modifiers at setup time too. We do this by calling
`onLayerChange()`, which already does that.
Fixes#670.
Signed-off-by: Gergely Nagy <algernon@keyboard.io>
This is a complete rewrite of Qukeys, in order to implement several improvements
and new features:
- A new KeyAddrEventQueue class has been introduced, in order to store both key
press and release events in the queue.
- The direct dependence on KeyboardioHID is removed by only flushing one event
from the queue per cycle.
- The array of Qukey objects is now stored in PROGMEM instead of SRAM, and is
configured via an array reference template function in order to automatically
ensure the count will be correct.
- There is a new algorithm for determining which state a qukey will collapse
into in the case of rollover from qukey to another key, which should reduce
the rate of errors for "sloppy" typists.
- A Qukey with a primary key value that is a modifier (including layer shift
keys) is treated like a SpaceCadet key, with different semantics. The
alternate (non-modifier) key value is only used if the SpaceCadet key is
pressed and released on its own, without rolling over to any other key.
- The code is generally simpler and easier to understand, with better inline
comments explaining how it all works.
Fixes#626.
Signed-off-by: Michael Richters <gedankenexperimenter@gmail.com>
Virtual builds use their own versions of pgm_read_...
Some of those caused warnings that needed to be silenced by proper casting.
In one place in LEDEffect-BootAnimation, this reveiled an error where a word was
read and then assinged to a byte value. This was fixed as well.
Signed-off-by: Florian Fleissner <florian.fleissner@inpartik.de>
This commit induces the following changes:
bin/kaleidoscope-builder
* ccache dummy compiler and executables are now generated in a way
that allows using the same CCACHE_WRAPPER_PATH for virtual and
non-virtual builds
* virtual builds are now triggered by either specifying the full FQBN with x86
as architecture or by defining ARCH=x86
etc/kaleidoscope-builder.conf
* COMPILER_PREFIX and COMPILER_PATH are now determined (if not predefined)
based on ARCH or FQBN
Signed-off-by: Florian Fleissner <florian.fleissner@inpartik.de>