parent
ad8fb67c6c
commit
ffcf15c67e
@ -0,0 +1,42 @@
|
||||
input = ARGF.read.split("\n")
|
||||
depart_time = input.shift.to_i
|
||||
buses = input.shift.split(?,).map {|b| b != ?x ? b.to_i : nil }
|
||||
|
||||
# p buses.compact.map {|bus|
|
||||
# d = bus * ((depart_time / bus) + 1)
|
||||
# [bus, d - depart_time]
|
||||
# }.min_by(&:last).inject {|a,b| a * b }
|
||||
|
||||
# shamelessly copied from https://rosettacode.org/wiki/Chinese_remainder_theorem#Ruby
|
||||
def extended_gcd(a, b)
|
||||
last_remainder, remainder = a.abs, b.abs
|
||||
x, last_x, y, last_y = 0, 1, 1, 0
|
||||
while remainder != 0
|
||||
last_remainder, (quotient, remainder) = remainder, last_remainder.divmod(remainder)
|
||||
x, last_x = last_x - quotient*x, x
|
||||
y, last_y = last_y - quotient*y, y
|
||||
end
|
||||
return last_remainder, last_x * (a < 0 ? -1 : 1)
|
||||
end
|
||||
|
||||
def invmod(e, et)
|
||||
g, x = extended_gcd(e, et)
|
||||
if g != 1
|
||||
raise 'Multiplicative inverse modulo does not exist!'
|
||||
end
|
||||
x % et
|
||||
end
|
||||
|
||||
def chinese_remainder(mods, remainders)
|
||||
max = mods.inject( :* ) # product of all moduli
|
||||
series = remainders.zip(mods).map{ |r,m| (r * max * invmod(max/m, m) / m) }
|
||||
series.inject( :+ ) % max
|
||||
end
|
||||
|
||||
buses = buses.map.with_index.select {|b,_| b }
|
||||
# p 0.step(by: buses[0][0]).lazy.find {|depart_time|
|
||||
# buses.all? {|b,i| (depart_time + i) % b == 0 }
|
||||
# }
|
||||
|
||||
mods, remainders = buses.map {|b,i| [b, b-i] }.transpose
|
||||
p chinese_remainder(mods, remainders)
|
Loading…
Reference in new issue