Check in non-working renamed plugin with the first little bit of work on

porting
pull/1086/head
Jesse Vincent 3 years ago
parent 81ff231683
commit cc313d6d57
No known key found for this signature in database
GPG Key ID: 122F5DF7108E4046

@ -1,6 +1,6 @@
/* -*- mode: c++ -*-
* Kaleidoscope-Hardware-Keyboardio-Model01 -- Keyboardio Model01 hardware support for Kaleidoscope
* Copyright (C) 2017-2019 Keyboard.io, Inc
* Kaleidoscope-Hardware-Keyboardio-Model100 -- Keyboardio Model100 hardware support for Kaleidoscope
* Copyright (C) 2021 Keyboard.io, Inc
*
* This program is free software: you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
@ -17,4 +17,4 @@
#pragma once
#include "kaleidoscope/device/keyboardio/Model01.h"
#include "kaleidoscope/device/keyboardio/Model100.h"

@ -1,6 +1,6 @@
/* -*- mode: c++ -*-
* Kaleidoscope-Hardware-Model01 -- Keyboard.io Model01 hardware support for Kaleidoscope
* Copyright (C) 2017-2020 Keyboard.io, Inc
* Kaleidoscope-Hardware-Model100 -- Keyboardio Model 100 hardware support for Kaleidoscope
* Copyright (C) 2021 Keyboard.io, Inc
*
* This program is free software: you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
@ -15,10 +15,10 @@
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef ARDUINO_AVR_MODEL01
#ifdef ARDUINO_GD32_keyboardio_model_100
#include "Arduino.h" // for PROGMEM
#include "kaleidoscope/device/keyboardio/Model01.h" // for Model01LEDDriver...
#include "kaleidoscope/device/keyboardio/Model100.h" // for Model100LEDDriver...
#include "kaleidoscope/key_events.h"
#include "kaleidoscope/driver/keyscanner/Base_Impl.h"
@ -31,23 +31,23 @@ namespace kaleidoscope {
namespace device {
namespace keyboardio {
constexpr uint8_t Model01LEDDriverProps::key_led_map[] PROGMEM;
constexpr uint8_t Model100LEDDriverProps::key_led_map[] PROGMEM;
#ifndef KALEIDOSCOPE_VIRTUAL_BUILD
/********* Model01Hands *********/
/********* Model100Hands *********/
struct Model01Hands {
static driver::keyboardio::Model01Side leftHand;
static driver::keyboardio::Model01Side rightHand;
struct Model100Hands {
static driver::keyboardio::Model100Side leftHand;
static driver::keyboardio::Model100Side rightHand;
static void setup();
};
driver::keyboardio::Model01Side Model01Hands::leftHand(0);
driver::keyboardio::Model01Side Model01Hands::rightHand(3);
driver::keyboardio::Model100Side Model100Hands::leftHand(0);
driver::keyboardio::Model100Side Model100Hands::rightHand(3);
void Model01Hands::setup(void) {
void Model100Hands::setup(void) {
// This lets the keyboard pull up to 1.6 amps from the host.
// That violates the USB spec. But it sure is pretty looking
DDRE |= _BV(6);
@ -59,29 +59,29 @@ void Model01Hands::setup(void) {
}
/********* LED Driver *********/
bool Model01LEDDriver::isLEDChanged = true;
bool Model100LEDDriver::isLEDChanged = true;
void Model01LEDDriver::setBrightness(uint8_t brightness) {
Model01Hands::leftHand.setBrightness(brightness);
Model01Hands::rightHand.setBrightness(brightness);
void Model100LEDDriver::setBrightness(uint8_t brightness) {
Model100Hands::leftHand.setBrightness(brightness);
Model100Hands::rightHand.setBrightness(brightness);
isLEDChanged = true;
}
uint8_t Model01LEDDriver::getBrightness() {
return Model01Hands::leftHand.getBrightness();
uint8_t Model100LEDDriver::getBrightness() {
return Model100Hands::leftHand.getBrightness();
}
void Model01LEDDriver::setCrgbAt(uint8_t i, cRGB crgb) {
void Model100LEDDriver::setCrgbAt(uint8_t i, cRGB crgb) {
if (i < 32) {
cRGB oldColor = getCrgbAt(i);
isLEDChanged |= !(oldColor.r == crgb.r && oldColor.g == crgb.g && oldColor.b == crgb.b);
Model01Hands::leftHand.ledData.leds[i] = crgb;
Model100Hands::leftHand.ledData.leds[i] = crgb;
} else if (i < 64) {
cRGB oldColor = getCrgbAt(i);
isLEDChanged |= !(oldColor.r == crgb.r && oldColor.g == crgb.g && oldColor.b == crgb.b);
Model01Hands::rightHand.ledData.leds[i - 32] = crgb;
Model100Hands::rightHand.ledData.leds[i - 32] = crgb;
} else {
// TODO(anyone):
// how do we want to handle debugging assertions about crazy user
@ -89,18 +89,18 @@ void Model01LEDDriver::setCrgbAt(uint8_t i, cRGB crgb) {
}
}
cRGB Model01LEDDriver::getCrgbAt(uint8_t i) {
cRGB Model100LEDDriver::getCrgbAt(uint8_t i) {
if (i >= 64)
return {0, 0, 0};
if (i < 32) {
return Model01Hands::leftHand.ledData.leds[i];
return Model100Hands::leftHand.ledData.leds[i];
} else {
return Model01Hands::rightHand.ledData.leds[i - 32];
return Model100Hands::rightHand.ledData.leds[i - 32];
}
}
void Model01LEDDriver::syncLeds() {
void Model100LEDDriver::syncLeds() {
if (!isLEDChanged)
return;
@ -110,63 +110,60 @@ void Model01LEDDriver::syncLeds() {
// we run into a race condition with updating the next bank
// on an ATTiny before it's done writing the previous one to memory
Model01Hands::leftHand.sendLEDData();
Model01Hands::rightHand.sendLEDData();
Model100Hands::leftHand.sendLEDData();
Model100Hands::rightHand.sendLEDData();
Model01Hands::leftHand.sendLEDData();
Model01Hands::rightHand.sendLEDData();
Model100Hands::leftHand.sendLEDData();
Model100Hands::rightHand.sendLEDData();
Model01Hands::leftHand.sendLEDData();
Model01Hands::rightHand.sendLEDData();
Model100Hands::leftHand.sendLEDData();
Model100Hands::rightHand.sendLEDData();
Model01Hands::leftHand.sendLEDData();
Model01Hands::rightHand.sendLEDData();
Model100Hands::leftHand.sendLEDData();
Model100Hands::rightHand.sendLEDData();
isLEDChanged = false;
}
boolean Model01LEDDriver::ledPowerFault() {
if (PINB & _BV(4)) {
return true;
} else {
return false;
}
boolean Model100LEDDriver::ledPowerFault() {
// TODO remove - obsolete
}
/********* Key scanner *********/
driver::keyboardio::keydata_t Model01KeyScanner::leftHandState;
driver::keyboardio::keydata_t Model01KeyScanner::rightHandState;
driver::keyboardio::keydata_t Model01KeyScanner::previousLeftHandState;
driver::keyboardio::keydata_t Model01KeyScanner::previousRightHandState;
driver::keyboardio::keydata_t Model100KeyScanner::leftHandState;
driver::keyboardio::keydata_t Model100KeyScanner::rightHandState;
driver::keyboardio::keydata_t Model100KeyScanner::previousLeftHandState;
driver::keyboardio::keydata_t Model100KeyScanner::previousRightHandState;
void Model01KeyScanner::enableScannerPower(void) {
// Turn on power to the LED net
DDRC |= _BV(7);
PORTC |= _BV(7);
void Model100KeyScanner::enableScannerPower(void) {
// Turn on power to the 5V net
//
pinMode(PC13, OUTPUT_OPEN_DRAIN);
digitalWrite(PC13, LOW);
}
void Model01KeyScanner::setup() {
void Model100KeyScanner::setup() {
wdt_disable();
delay(100);
enableScannerPower();
}
void Model01KeyScanner::readMatrix() {
void Model100KeyScanner::readMatrix() {
//scan the Keyboard matrix looking for connections
previousLeftHandState = leftHandState;
previousRightHandState = rightHandState;
if (Model01Hands::leftHand.readKeys()) {
leftHandState = Model01Hands::leftHand.getKeyData();
if (Model100Hands::leftHand.readKeys()) {
leftHandState = Model100Hands::leftHand.getKeyData();
}
if (Model01Hands::rightHand.readKeys()) {
rightHandState = Model01Hands::rightHand.getKeyData();
if (Model100Hands::rightHand.readKeys()) {
rightHandState = Model100Hands::rightHand.getKeyData();
}
}
void Model01KeyScanner::actOnHalfRow(byte row, byte colState, byte colPrevState, byte startPos) {
void Model100KeyScanner::actOnHalfRow(byte row, byte colState, byte colPrevState, byte startPos) {
if ((colState != colPrevState) || (colState != 0)) {
for (byte col = 0; col < 8; col++) {
// Build up the key state for row, col
@ -182,7 +179,7 @@ void Model01KeyScanner::actOnHalfRow(byte row, byte colState, byte colPrevState,
}
}
void Model01KeyScanner::actOnMatrixScan() {
void Model100KeyScanner::actOnMatrixScan() {
for (byte row = 0; row < 4; row++) {
actOnHalfRow(row, leftHandState.rows[row], previousLeftHandState.rows[row], 7);
actOnHalfRow(row, rightHandState.rows[row], previousRightHandState.rows[row], 15);
@ -190,17 +187,17 @@ void Model01KeyScanner::actOnMatrixScan() {
}
void Model01KeyScanner::scanMatrix() {
void Model100KeyScanner::scanMatrix() {
readMatrix();
actOnMatrixScan();
}
void Model01KeyScanner::setKeyscanInterval(uint8_t interval) {
Model01Hands::leftHand.setKeyscanInterval(interval);
Model01Hands::rightHand.setKeyscanInterval(interval);
void Model100KeyScanner::setKeyscanInterval(uint8_t interval) {
Model100Hands::leftHand.setKeyscanInterval(interval);
Model100Hands::rightHand.setKeyscanInterval(interval);
}
bool Model01KeyScanner::isKeyswitchPressed(KeyAddr key_addr) {
bool Model100KeyScanner::isKeyswitchPressed(KeyAddr key_addr) {
auto row = key_addr.row();
auto col = key_addr.col();
if (col <= 7) {
@ -210,7 +207,7 @@ bool Model01KeyScanner::isKeyswitchPressed(KeyAddr key_addr) {
}
}
bool Model01KeyScanner::wasKeyswitchPressed(KeyAddr key_addr) {
bool Model100KeyScanner::wasKeyswitchPressed(KeyAddr key_addr) {
auto row = key_addr.row();
auto col = key_addr.col();
if (col <= 7) {
@ -220,27 +217,25 @@ bool Model01KeyScanner::wasKeyswitchPressed(KeyAddr key_addr) {
}
}
uint8_t Model01KeyScanner::pressedKeyswitchCount() {
uint8_t Model100KeyScanner::pressedKeyswitchCount() {
return __builtin_popcountl(leftHandState.all) + __builtin_popcountl(rightHandState.all);
}
uint8_t Model01KeyScanner::previousPressedKeyswitchCount() {
uint8_t Model100KeyScanner::previousPressedKeyswitchCount() {
return __builtin_popcountl(previousLeftHandState.all) + __builtin_popcountl(previousRightHandState.all);
}
/********* Hardware plugin *********/
void Model01::setup() {
Model01Hands::setup();
kaleidoscope::device::Base<Model01Props>::setup();
TWBR = 12; // This is 400mhz, which is the fastest we can drive the ATTiny
void Model100::setup() {
Model100Hands::setup();
kaleidoscope::device::Base<Model100Props>::setup();
}
void Model01::enableHardwareTestMode() {
void Model100::enableHardwareTestMode() {
// Toggle the programming LEDS on
PORTD |= (1 << 5);
PORTB |= (1 << 0);
// TODO PORTD |= (1 << 5);
// TOOD PORTB |= (1 << 0);
// Disable the debouncer on the ATTinys
KeyScanner::setKeyscanInterval(2);

@ -1,6 +1,6 @@
/* -*- mode: c++ -*-
* Kaleidoscope-Hardware-Model01 -- Keyboard.io Model01 hardware support for Kaleidoscope
* Copyright (C) 2017-2020 Keyboard.io, Inc
* Kaleidoscope-Hardware-Model100 -- Keyboardio Model100 hardware support for Kaleidoscope
* Copyright (C) 2017-2021 Keyboard.io, Inc
*
* This program is free software: you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
@ -17,7 +17,7 @@
#pragma once
#ifdef ARDUINO_AVR_MODEL01
#ifdef ARDUINO_GD32_keyboardio_model_100
#include <Arduino.h>
@ -32,15 +32,15 @@ struct cRGB {
#include "kaleidoscope/device/ATmega32U4Keyboard.h"
#include "kaleidoscope/driver/keyscanner/Base.h"
#include "kaleidoscope/driver/keyboardio/Model01Side.h"
#include "kaleidoscope/driver/keyboardio/Model100Side.h"
#include "kaleidoscope/driver/led/Base.h"
#include "kaleidoscope/driver/bootloader/avr/Caterina.h"
#include "kaleidoscope/driver/bootloader/gd32/Base.h"
namespace kaleidoscope {
namespace device {
namespace keyboardio {
struct Model01LEDDriverProps : public kaleidoscope::driver::led::BaseProps {
struct Model100LEDDriverProps : public kaleidoscope::driver::led::BaseProps {
static constexpr uint8_t led_count = 64;
static constexpr uint8_t key_led_map[] PROGMEM = {
3, 4, 11, 12, 19, 20, 26, 27, 36, 37, 43, 44, 51, 52, 59, 60,
@ -51,7 +51,7 @@ struct Model01LEDDriverProps : public kaleidoscope::driver::led::BaseProps {
};
#ifndef KALEIDOSCOPE_VIRTUAL_BUILD
class Model01LEDDriver : public kaleidoscope::driver::led::Base<Model01LEDDriverProps> {
class Model100LEDDriver : public kaleidoscope::driver::led::Base<Model100LEDDriverProps> {
public:
static void syncLeds();
static void setCrgbAt(uint8_t i, cRGB crgb);
@ -66,19 +66,19 @@ class Model01LEDDriver : public kaleidoscope::driver::led::Base<Model01LEDDriver
static bool isLEDChanged;
};
#else // ifndef KALEIDOSCOPE_VIRTUAL_BUILD
class Model01LEDDriver;
class Model100LEDDriver;
#endif // ifndef KALEIDOSCOPE_VIRTUAL_BUILD
struct Model01KeyScannerProps : public kaleidoscope::driver::keyscanner::BaseProps {
struct Model100KeyScannerProps : public kaleidoscope::driver::keyscanner::BaseProps {
static constexpr uint8_t matrix_rows = 4;
static constexpr uint8_t matrix_columns = 16;
typedef MatrixAddr<matrix_rows, matrix_columns> KeyAddr;
};
#ifndef KALEIDOSCOPE_VIRTUAL_BUILD
class Model01KeyScanner : public kaleidoscope::driver::keyscanner::Base<Model01KeyScannerProps> {
class Model100KeyScanner : public kaleidoscope::driver::keyscanner::Base<Model100KeyScannerProps> {
private:
typedef Model01KeyScanner ThisType;
typedef Model100KeyScanner ThisType;
public:
static void setup();
static void scanMatrix();
@ -103,21 +103,21 @@ class Model01KeyScanner : public kaleidoscope::driver::keyscanner::Base<Model01K
static void enableScannerPower();
};
#else // ifndef KALEIDOSCOPE_VIRTUAL_BUILD
class Model01KeyScanner;
class Model100KeyScanner;
#endif // ifndef KALEIDOSCOPE_VIRTUAL_BUILD
struct Model01Props : public kaleidoscope::device::ATmega32U4KeyboardProps {
typedef Model01LEDDriverProps LEDDriverProps;
typedef Model01LEDDriver LEDDriver;
typedef Model01KeyScannerProps KeyScannerProps;
typedef Model01KeyScanner KeyScanner;
typedef kaleidoscope::driver::bootloader::avr::Caterina BootLoader;
static constexpr const char *short_name = "kbio01";
struct Model100Props : public kaleidoscope::device::BaseKeyboardProps {
typedef Model100LEDDriverProps LEDDriverProps;
typedef Model100LEDDriver LEDDriver;
typedef Model100KeyScannerProps KeyScannerProps;
typedef Model100KeyScanner KeyScanner;
typedef kaleidoscope::driver::bootloader::gd32::Base BootLoader;
static constexpr const char *short_name = "kbio100";
};
#ifndef KALEIDOSCOPE_VIRTUAL_BUILD
class Model01 : public kaleidoscope::device::ATmega32U4Keyboard<Model01Props> {
class Model100 : public kaleidoscope::device::Base<Model100Props> {
public:
void setup();
@ -129,7 +129,7 @@ class Model01 : public kaleidoscope::device::ATmega32U4Keyboard<Model01Props> {
} // namespace keyboardio
} // namespace device
EXPORT_DEVICE(kaleidoscope::device::keyboardio::Model01)
EXPORT_DEVICE(kaleidoscope::device::keyboardio::Model100)
}

@ -1,574 +0,0 @@
/*
twi.c - TWI/I2C library for Wiring & Arduino
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version.
This library is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.
You should have received a copy of the GNU Lesser General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.
Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts
*/
#if defined(__AVR__) && !defined(KALEIDOSCOPE_VIRTUAL_BUILD)
#define ENABLE_TWI_SLAVE_MODE 0
#include <math.h>
#include <stdlib.h>
#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <compat/twi.h>
// #include "Arduino.h" // for digitalWrite
#define true 1
#define false 0
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
#include "pins_arduino.h"
#include "twi.h"
static volatile uint8_t twi_state;
static volatile uint8_t twi_slarw;
static volatile uint8_t twi_sendStop; // should the transaction end with a stop
static volatile uint8_t twi_inRepStart; // in the middle of a repeated start
static void (*twi_onSlaveTransmit)(void);
static void (*twi_onSlaveReceive)(uint8_t*, int);
static uint8_t twi_masterBuffer[TWI_BUFFER_LENGTH];
static volatile uint8_t twi_masterBufferIndex;
static volatile uint8_t twi_masterBufferLength;
static uint8_t twi_txBuffer[TWI_BUFFER_LENGTH];
static volatile uint8_t twi_txBufferIndex;
static volatile uint8_t twi_txBufferLength;
#if ENABLE_TWI_SLAVE_MODE
static uint8_t twi_rxBuffer[TWI_BUFFER_LENGTH];
static volatile uint8_t twi_rxBufferIndex;
#endif
static volatile uint8_t twi_error;
/*
* Function twi_init
* Desc readys twi pins and sets twi bitrate
* Input none
* Output none
*/
void twi_init(void) {
// initialize state
twi_state = TWI_READY;
twi_sendStop = true; // default value
twi_inRepStart = false;
// activate internal pullups for twi.
// digitalWrite(SDA, 1);
PORTD |= _BV(0);
// digitalWrite(SCL, 1);
PORTD |= _BV(1);
// initialize twi prescaler and bit rate
cbi(TWSR, TWPS0);
cbi(TWSR, TWPS1);
TWBR = ((F_CPU / TWI_FREQ) - 16) / 2;
/* twi bit rate formula from atmega128 manual pg 204
SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))
note: TWBR should be 10 or higher for master mode
It is 72 for a 16mhz Wiring board with 100kHz TWI */
// enable twi module, acks, and twi interrupt
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA);
}
/*
* Function twi_disable
* Desc disables twi pins
* Input none
* Output none
*/
void twi_disable(void) {
// disable twi module, acks, and twi interrupt
TWCR &= ~(_BV(TWEN) | _BV(TWIE) | _BV(TWEA));
// deactivate internal pullups for twi.
// digitalWrite(SDA, 0);
PORTD &= ~_BV(0);
// digitalWrite(SCL, 0);
PORTD &= ~_BV(1);
}
/*
* Function twi_slaveInit
* Desc sets slave address and enables interrupt
* Input none
* Output none
*/
void twi_setAddress(uint8_t address) {
// set twi slave address (skip over TWGCE bit)
TWAR = address << 1;
}
/*
* Function twi_setClock
* Desc sets twi bit rate
* Input Clock Frequency
* Output none
*/
void twi_setFrequency(uint32_t frequency) {
TWBR = ((F_CPU / frequency) - 16) / 2;
/* twi bit rate formula from atmega128 manual pg 204
SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))
note: TWBR should be 10 or higher for master mode
It is 72 for a 16mhz Wiring board with 100kHz TWI */
}
/*
* Function twi_readFrom
* Desc attempts to become twi bus master and read a
* series of bytes from a device on the bus
* Input address: 7bit i2c device address
* data: pointer to byte array
* length: number of bytes to read into array
* sendStop: Boolean indicating whether to send a stop at the end
* Output number of bytes read
*/
uint8_t twi_readFrom(uint8_t address, uint8_t* data, uint8_t length, uint8_t sendStop) {
uint8_t i;
// ensure data will fit into buffer
if (TWI_BUFFER_LENGTH < length) {
return 0;
}
// wait until twi is ready, become master receiver
while (TWI_READY != twi_state) {
continue;
}
twi_state = TWI_MRX;
twi_sendStop = sendStop;
// reset error state (0xFF.. no error occured)
twi_error = 0xFF;
// initialize buffer iteration vars
twi_masterBufferIndex = 0;
twi_masterBufferLength = length - 1; // This is not intuitive, read on...
// On receive, the previously configured ACK/NACK setting is transmitted in
// response to the received byte before the interrupt is signalled.
// Therefor we must actually set NACK when the _next_ to last byte is
// received, causing that NACK to be sent in response to receiving the last
// expected byte of data.
// build sla+w, slave device address + w bit
twi_slarw = TW_READ;
twi_slarw |= address << 1;
if (true == twi_inRepStart) {
// if we're in the repeated start state, then we've already sent the start,
// (@@@ we hope), and the TWI statemachine is just waiting for the address byte.
// We need to remove ourselves from the repeated start state before we enable interrupts,
// since the ISR is ASYNC, and we could get confused if we hit the ISR before cleaning
// up. Also, don't enable the START interrupt. There may be one pending from the
// repeated start that we sent ourselves, and that would really confuse things.
twi_inRepStart = false; // remember, we're dealing with an ASYNC ISR
do {
TWDR = twi_slarw;
} while (TWCR & _BV(TWWC));
TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); // enable INTs, but not START
} else
// send start condition
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTA);
// wait for read operation to complete
while (TWI_MRX == twi_state) {
continue;
}
if (twi_masterBufferIndex < length)
length = twi_masterBufferIndex;
// copy twi buffer to data
for (i = 0; i < length; ++i) {
data[i] = twi_masterBuffer[i];
}
return length;
}
/*
* Function twi_writeTo
* Desc attempts to become twi bus master and write a
* series of bytes to a device on the bus
* Input address: 7bit i2c device address
* data: pointer to byte array
* length: number of bytes in array
* wait: boolean indicating to wait for write or not
* sendStop: boolean indicating whether or not to send a stop at the end
* Output 0 .. success
* 1 .. length to long for buffer
* 2 .. address send, NACK received
* 3 .. data send, NACK received
* 4 .. other twi error (lost bus arbitration, bus error, ..)
*/
uint8_t twi_writeTo(uint8_t address, uint8_t* data, uint8_t length, uint8_t wait, uint8_t sendStop) {
uint8_t i;
// ensure data will fit into buffer
if (TWI_BUFFER_LENGTH < length) {
return 1;
}
// wait until twi is ready, become master transmitter
while (TWI_READY != twi_state) {
continue;
}
twi_state = TWI_MTX;
twi_sendStop = sendStop;
// reset error state (0xFF.. no error occured)
twi_error = 0xFF;
// initialize buffer iteration vars
twi_masterBufferIndex = 0;
twi_masterBufferLength = length;
// copy data to twi buffer
for (i = 0; i < length; ++i) {
twi_masterBuffer[i] = data[i];
}
// build sla+w, slave device address + w bit
twi_slarw = TW_WRITE;
twi_slarw |= address << 1;
// if we're in a repeated start, then we've already sent the START
// in the ISR. Don't do it again.
//
if (true == twi_inRepStart) {
// if we're in the repeated start state, then we've already sent the start,
// (@@@ we hope), and the TWI statemachine is just waiting for the address byte.
// We need to remove ourselves from the repeated start state before we enable interrupts,
// since the ISR is ASYNC, and we could get confused if we hit the ISR before cleaning
// up. Also, don't enable the START interrupt. There may be one pending from the
// repeated start that we sent outselves, and that would really confuse things.
twi_inRepStart = false; // remember, we're dealing with an ASYNC ISR
do {
TWDR = twi_slarw;
} while (TWCR & _BV(TWWC));
TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); // enable INTs, but not START
} else
// send start condition
TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE) | _BV(TWSTA); // enable INTs
// wait for write operation to complete
while (wait && (TWI_MTX == twi_state)) {
continue;
}
switch (twi_error) {
case 0xFF:
return 0; // success
case TW_MT_SLA_NACK:
return 2; // error: address send, nack received
case TW_MT_DATA_NACK:
return 3; // error: data send, nack received
default:
return 4; // other twi error
}
}
/*
* Function twi_transmit
* Desc fills slave tx buffer with data
* must be called in slave tx event callback
* Input data: pointer to byte array
* length: number of bytes in array
* Output 1 length too long for buffer
* 2 not slave transmitter
* 0 ok
*/
uint8_t twi_transmit(const uint8_t* data, uint8_t length) {
uint8_t i;
// ensure data will fit into buffer
if (TWI_BUFFER_LENGTH < (twi_txBufferLength + length)) {
return 1;
}
// ensure we are currently a slave transmitter
if (TWI_STX != twi_state) {
return 2;
}
// set length and copy data into tx buffer
for (i = 0; i < length; ++i) {
twi_txBuffer[twi_txBufferLength + i] = data[i];
}
twi_txBufferLength += length;
return 0;
}
/*
* Function twi_attachSlaveRxEvent
* Desc sets function called before a slave read operation
* Input function: callback function to use
* Output none
*/
void twi_attachSlaveRxEvent(void (*function)(uint8_t*, int)) {
twi_onSlaveReceive = function;
}
/*
* Function twi_attachSlaveTxEvent
* Desc sets function called before a slave write operation
* Input function: callback function to use
* Output none
*/
void twi_attachSlaveTxEvent(void (*function)(void)) {
twi_onSlaveTransmit = function;
}
/*
* Function twi_reply
* Desc sends byte or readys receive line
* Input ack: byte indicating to ack or to nack
* Output none
*/
void twi_reply(uint8_t ack) {
// transmit master read ready signal, with or without ack
if (ack) {
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT) | _BV(TWEA);
} else {
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT);
}
}
/*
* Function twi_stop
* Desc relinquishes bus master status
* Input none
* Output none
*/
void twi_stop(void) {
// send stop condition
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTO);
// wait for stop condition to be exectued on bus
// TWINT is not set after a stop condition!
while (TWCR & _BV(TWSTO)) {
continue;
}
// update twi state
twi_state = TWI_READY;
}
/*
* Function twi_releaseBus
* Desc releases bus control
* Input none
* Output none
*/
void twi_releaseBus(void) {
// release bus
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT);
// update twi state
twi_state = TWI_READY;
}
ISR(TWI_vect) {
switch (TW_STATUS) {
// All Master
case TW_START: // sent start condition
/* Falls through. */
case TW_REP_START: // sent repeated start condition
// copy device address and r/w bit to output register and ack
TWDR = twi_slarw;
twi_reply(1);
break;
// Master Transmitter
case TW_MT_SLA_ACK: // slave receiver acked address
/* Falls through. */
case TW_MT_DATA_ACK: // slave receiver acked data
// if there is data to send, send it, otherwise stop
if (twi_masterBufferIndex < twi_masterBufferLength) {
// copy data to output register and ack
TWDR = twi_masterBuffer[twi_masterBufferIndex++];
twi_reply(1);
} else {
if (twi_sendStop)
twi_stop();
else {
twi_inRepStart = true; // we're gonna send the START
// don't enable the interrupt. We'll generate the start, but we
// avoid handling the interrupt until we're in the next transaction,
// at the point where we would normally issue the start.
TWCR = _BV(TWINT) | _BV(TWSTA) | _BV(TWEN) ;
twi_state = TWI_READY;
}
}
break;
case TW_MT_SLA_NACK: // address sent, nack received
twi_error = TW_MT_SLA_NACK;
twi_stop();
break;
case TW_MT_DATA_NACK: // data sent, nack received
twi_error = TW_MT_DATA_NACK;
twi_stop();
break;
case TW_MT_ARB_LOST: // lost bus arbitration
twi_error = TW_MT_ARB_LOST;
twi_releaseBus();
break;
// Master Receiver
case TW_MR_DATA_ACK: // data received, ack sent
// put byte into buffer
twi_masterBuffer[twi_masterBufferIndex++] = TWDR;
/* intentionally fall through */
case TW_MR_SLA_ACK: // address sent, ack received
// ack if more bytes are expected, otherwise nack
if (twi_masterBufferIndex < twi_masterBufferLength) {
twi_reply(1);
} else {
twi_reply(0);
}
break;
case TW_MR_DATA_NACK: // data received, nack sent
// put final byte into buffer
twi_masterBuffer[twi_masterBufferIndex++] = TWDR;
if (twi_sendStop)
twi_stop();
else {
twi_inRepStart = true; // we're gonna send the START
// don't enable the interrupt. We'll generate the start, but we
// avoid handling the interrupt until we're in the next transaction,
// at the point where we would normally issue the start.
TWCR = _BV(TWINT) | _BV(TWSTA) | _BV(TWEN) ;
twi_state = TWI_READY;
}
break;
case TW_MR_SLA_NACK: // address sent, nack received
twi_stop();
break;
// TW_MR_ARB_LOST handled by TW_MT_ARB_LOST case
#if ENABLE_TWI_SLAVE_MODE
// Slave Receiver
case TW_SR_SLA_ACK: // addressed, returned ack
/* Falls through. */
case TW_SR_GCALL_ACK: // addressed generally, returned ack
/* Falls through. */
case TW_SR_ARB_LOST_SLA_ACK: // lost arbitration, returned ack
/* Falls through. */
case TW_SR_ARB_LOST_GCALL_ACK: // lost arbitration, returned ack
// enter slave receiver mode
twi_state = TWI_SRX;
// indicate that rx buffer can be overwritten and ack
twi_rxBufferIndex = 0;
twi_reply(1);
break;
case TW_SR_DATA_ACK: // data received, returned ack
/* Falls through. */
case TW_SR_GCALL_DATA_ACK: // data received generally, returned ack
// if there is still room in the rx buffer
if (twi_rxBufferIndex < TWI_BUFFER_LENGTH) {
// put byte in buffer and ack
twi_rxBuffer[twi_rxBufferIndex++] = TWDR;
twi_reply(1);
} else {
// otherwise nack
twi_reply(0);
}
break;
case TW_SR_STOP: // stop or repeated start condition received
// ack future responses and leave slave receiver state
twi_releaseBus();
// put a null char after data if there's room
if (twi_rxBufferIndex < TWI_BUFFER_LENGTH) {
twi_rxBuffer[twi_rxBufferIndex] = '\0';
}
// callback to user defined callback
twi_onSlaveReceive(twi_rxBuffer, twi_rxBufferIndex);
// since we submit rx buffer to "wire" library, we can reset it
twi_rxBufferIndex = 0;
break;
case TW_SR_DATA_NACK: // data received, returned nack
/* Falls through. */
case TW_SR_GCALL_DATA_NACK: // data received generally, returned nack
// nack back at master
twi_reply(0);
break;
// Slave Transmitter
case TW_ST_SLA_ACK: // addressed, returned ack
/* Falls through. */
case TW_ST_ARB_LOST_SLA_ACK: // arbitration lost, returned ack
// enter slave transmitter mode
twi_state = TWI_STX;
// ready the tx buffer index for iteration
twi_txBufferIndex = 0;
// set tx buffer length to be zero, to verify if user changes it
twi_txBufferLength = 0;
// request for txBuffer to be filled and length to be set
// note: user must call twi_transmit(bytes, length) to do this
twi_onSlaveTransmit();
// if they didn't change buffer & length, initialize it
if (0 == twi_txBufferLength) {
twi_txBufferLength = 1;
twi_txBuffer[0] = 0x00;
}
// transmit first byte from buffer, fall through
case TW_ST_DATA_ACK: // byte sent, ack returned
// copy data to output register
TWDR = twi_txBuffer[twi_txBufferIndex++];
// if there is more to send, ack, otherwise nack
if (twi_txBufferIndex < twi_txBufferLength) {
twi_reply(1);
} else {
twi_reply(0);
}
break;
case TW_ST_DATA_NACK: // received nack, we are done
/* Falls through. */
case TW_ST_LAST_DATA: // received ack, but we are done already!
// ack future responses
twi_reply(1);
// leave slave receiver state
twi_state = TWI_READY;
break;
#endif
// All
case TW_NO_INFO: // no state information
break;
case TW_BUS_ERROR: // bus error, illegal stop/start
twi_error = TW_BUS_ERROR;
twi_stop();
break;
}
}
#endif

@ -1,57 +0,0 @@
/*
twi.h - TWI/I2C library for Wiring & Arduino
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version.
This library is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.
You should have received a copy of the GNU Lesser General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#ifdef __AVR__
#ifndef KALEIDOSCOPE_VIRTUAL_BUILD
#include <inttypes.h>
//#define ATMEGA8
#ifndef TWI_FREQ
#define TWI_FREQ 100000L
#endif
#ifndef TWI_BUFFER_LENGTH
#define TWI_BUFFER_LENGTH 192
#endif
#define TWI_READY 0
#define TWI_MRX 1
#define TWI_MTX 2
#define TWI_SRX 3
#define TWI_STX 4
void twi_init(void);
void twi_disable(void);
void twi_setAddress(uint8_t);
void twi_setFrequency(uint32_t);
uint8_t twi_readFrom(uint8_t, uint8_t*, uint8_t, uint8_t);
uint8_t twi_writeTo(uint8_t, uint8_t*, uint8_t, uint8_t, uint8_t);
uint8_t twi_transmit(const uint8_t*, uint8_t);
void twi_attachSlaveRxEvent(void (*)(uint8_t*, int));
void twi_attachSlaveTxEvent(void (*)(void));
void twi_reply(uint8_t);
void twi_stop(void);
void twi_releaseBus(void);
#endif // ifndef KALEIDOSCOPE_VIRTUAL_BUILD
#endif

@ -1,5 +1,5 @@
/* kaleidoscope::driver::keyboardio::Model01Side
* Copyright (C) 2015-2020 Keyboard.io, Inc
/* kaleidoscope::driver::keyboardio::Model100Side
* Copyright (C) 2021 Keyboard.io, Inc
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@ -23,7 +23,7 @@
#ifndef KALEIDOSCOPE_VIRTUAL_BUILD
#include <Arduino.h>
#include "Model01Side.h"
#include "Model100Side.h"
extern "C" {
#include "kaleidoscope/device/keyboardio/twi.h"
@ -40,7 +40,7 @@ namespace keyboardio {
uint8_t twi_uninitialized = 1;
Model01Side::Model01Side(byte setAd01) {
Model100Side::Model100Side(byte setAd01) {
ad01 = setAd01;
addr = SCANNER_I2C_ADDR_BASE | ad01;
if (twi_uninitialized--) {
@ -49,7 +49,7 @@ Model01Side::Model01Side(byte setAd01) {
}
// Returns the relative controller addresss. The expected range is 0-3
uint8_t Model01Side::controllerAddress() {
uint8_t Model100Side::controllerAddress() {
return ad01;
}
@ -70,7 +70,7 @@ uint8_t Model01Side::controllerAddress() {
//
// returns the Wire.endTransmission code (0 = success)
// https://www.arduino.cc/en/Reference/WireEndTransmission
byte Model01Side::setKeyscanInterval(byte delay) {
byte Model100Side::setKeyscanInterval(byte delay) {
uint8_t data[] = {TWI_CMD_KEYSCAN_INTERVAL, delay};
uint8_t result = twi_writeTo(addr, data, ELEMENTS(data), 1, 0);
@ -81,18 +81,18 @@ byte Model01Side::setKeyscanInterval(byte delay) {
// returns -1 on error, otherwise returns the scanner version integer
int Model01Side::readVersion() {
int Model100Side::readVersion() {
return readRegister(TWI_CMD_VERSION);
}
// returns -1 on error, otherwise returns the scanner keyscan interval
int Model01Side::readKeyscanInterval() {
int Model100Side::readKeyscanInterval() {
return readRegister(TWI_CMD_KEYSCAN_INTERVAL);
}
// returns -1 on error, otherwise returns the LED SPI Frequncy
int Model01Side::readLEDSPIFrequency() {
int Model100Side::readLEDSPIFrequency() {
return readRegister(TWI_CMD_LED_SPI_FREQUENCY);
}
@ -101,7 +101,7 @@ int Model01Side::readLEDSPIFrequency() {
//
// returns the Wire.endTransmission code (0 = success)
// https://www.arduino.cc/en/Reference/WireEndTransmission
byte Model01Side::setLEDSPIFrequency(byte frequency) {
byte Model100Side::setLEDSPIFrequency(byte frequency) {
uint8_t data[] = {TWI_CMD_LED_SPI_FREQUENCY, frequency};
uint8_t result = twi_writeTo(addr, data, ELEMENTS(data), 1, 0);
@ -110,7 +110,7 @@ byte Model01Side::setLEDSPIFrequency(byte frequency) {
int Model01Side::readRegister(uint8_t cmd) {
int Model100Side::readRegister(uint8_t cmd) {
byte return_value = 0;
@ -138,7 +138,7 @@ int Model01Side::readRegister(uint8_t cmd) {
// gives information on the key that was just pressed or released.
bool Model01Side::readKeys() {
bool Model100Side::readKeys() {
uint8_t rxBuffer[5];
@ -155,11 +155,11 @@ bool Model01Side::readKeys() {
}
}
keydata_t Model01Side::getKeyData() {
keydata_t Model100Side::getKeyData() {
return keyData;
}
void Model01Side::sendLEDData() {
void Model100Side::sendLEDData() {
sendLEDBank(nextLEDBank++);
if (nextLEDBank == LED_BANKS) {
nextLEDBank = 0;
@ -168,7 +168,7 @@ void Model01Side::sendLEDData() {
auto constexpr gamma8 = kaleidoscope::driver::color::gamma_correction;
void Model01Side::sendLEDBank(byte bank) {
void Model100Side::sendLEDBank(byte bank) {
uint8_t data[LED_BYTES_PER_BANK + 1];
data[0] = TWI_CMD_LED_BASE + bank;
for (uint8_t i = 0 ; i < LED_BYTES_PER_BANK; i++) {
@ -187,7 +187,7 @@ void Model01Side::sendLEDBank(byte bank) {
uint8_t result = twi_writeTo(addr, data, ELEMENTS(data), 1, 0);
}
void Model01Side::setAllLEDsTo(cRGB color) {
void Model100Side::setAllLEDsTo(cRGB color) {
uint8_t data[] = {TWI_CMD_LED_SET_ALL_TO,
pgm_read_byte(&gamma8[color.b]),
pgm_read_byte(&gamma8[color.g]),
@ -196,7 +196,7 @@ void Model01Side::setAllLEDsTo(cRGB color) {
uint8_t result = twi_writeTo(addr, data, ELEMENTS(data), 1, 0);
}
void Model01Side::setOneLEDTo(byte led, cRGB color) {
void Model100Side::setOneLEDTo(byte led, cRGB color) {
uint8_t data[] = {TWI_CMD_LED_SET_ONE_TO,
led,
pgm_read_byte(&gamma8[color.b]),

@ -1,6 +1,6 @@
// -*- mode: c++ -*-
/* kaleidoscope::driver::keyboardio::Model01Side
* Copyright (C) 2015-2020 Keyboard.io, Inc
/* kaleidoscope::driver::keyboardio::Model100Side
* Copyright (C) 2021 Keyboard.io, Inc
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@ -60,10 +60,10 @@ typedef union {
#ifndef KALEIDOSCOPE_VIRTUAL_BUILD
// used to configure interrupts, configuration for a particular controller
class Model01Side {
class Model100Side {
public:
explicit Model01Side(byte setAd01);
~Model01Side() {}
explicit Model100Side(byte setAd01);
~Model100Side() {}
int readVersion();
@ -98,7 +98,7 @@ class Model01Side {
int readRegister(uint8_t cmd);
};
#else // ifndef KALEIDOSCOPE_VIRTUAL_BUILD
class Model01Side;
class Model100Side;
#endif // ifndef KALEIDOSCOPE_VIRTUAL_BUILD
} // namespace keyboardio
Loading…
Cancel
Save