@ -18,88 +18,54 @@ This can be used to tie complex actions to key chords.
## Using the extension
To use the extension, we must include the header, create an array of combos we
want to work with, let the plugin know we want to work with those, and then use
a special function to handle the combos:
To use the extension, we must include the header, create actions for the magic
combos we want to trigger, and set up a mapping:
```c++
#include < Kaleidoscope.h >
#include < Kaleidoscope-Macros.h >
#include < Kaleidoscope-MagicCombo.h >
void magicComboActions(uint8_t combo_index, uint32_t left_hand, uint32_t right_hand) {
switch (combo_index) {
case 0:
Macros.type(PSTR("It's a kind of magic!"));
break;
}
enum { KIND_OF_MAGIC };
void kindOfMagic(uint8_t combo_index) {
Macros.type(PSTR("It's a kind of magic!"));
}
static const kaleidoscope::MagicCombo::combo_t magic_combos[] PROGMEM = {
{
R3C6, // left palm key
R3C9 // right palm key
},
{0, 0}
};
USE_MAGIC_COMBOS(
[KIND_OF_MAGIC] = {
.action = kindOfMagic,
.keys = {R3C6, R3C9} // Left Fn + Right Fn
});
KALEIDOSCOPE_INIT_PLUGINS(MagicCombo, Macros);
void setup() {
Kaleidoscope.setup();
MagicCombo.magic_combos = magic_combos;
}
```
The combo list **must** reside in `PROGMEM` , and is a list of tuples. Each
element in the array has two fields: the left hand state, and the right hand
state upon which to trigger the custom action. Both of these are bit fields,
each bit set tells the extension that the key with that index must be held for
the action to trigger. It is recommended to use the `RxCy` macros of the core
`KaleidoscopeFirmware` , and *or* them together to form a bitfield.
To see how the `RxCy` coordinates correspond to the physical keys of your
keyboard, you'll have to consult the documentation for the keyboard.
Below, you can find a diagram showing the layout for the Keyboardio Model 01.
The combo list **must** end with an element containing zero values for both the
left and the right halves.
It is recommended to use the `RxCy` macros of the core firmware to set the keys
that are part of a combination.
## Extension method s
## Plugin properties
The extension provides a `MagicCombo` singleton object, with the following
methods and properties:
### `.magic_combos`
> Setting this property lets the plugin know which combinations of key presses
> we are interested in. If any of these are found active, the
> `magicComboActions()` function will be called.
property:
### `.min_interval`
> Restrict the magic action to fire at most once every `min I nterval`
> Restrict the magic action to fire at most once every `min_interval`
> milliseconds.
>
> Defaults to 500.
## Overrideable method s
## Plugin callback s
Whenever an combination is found to be held, the extension will trigger an
action, in each scan cycle until the keys remain held. This is done by calling
the overrideable `magicComboActions` function:
### `magicComboActions(combo_index, left_hand, right_hand)`
> Called whenever a combination is found to be held. The function by default
> does nothing, and it is recommended to override it from within the Sketch.
>
> The first argument will be the index in the combo list, the other two are the
> key states on the left and right halves, respectively.
>
> Plugins that build upon this extensions *should not* override this function,
> but provide helpers that can be called from it. An override should only happen
> in the Sketch.
Whenever a combination is found to be held, the plugin will trigger the
specified action, which is just a regular method with a single `uint8_t`
argument: the index of the magic combo. This function will be called repeatedly
(every `min_interval` milliseconds) while the combination is held.
## Further reading