New device: Keyboardio Imago

This is a device plugin for the Keyboardio Imago.

Signed-off-by: Gergely Nagy <algernon@keyboard.io>
pull/695/head
Gergely Nagy 5 years ago
parent d39a8dc46c
commit 3601272478
No known key found for this signature in database
GPG Key ID: AC1E90BAC433F68F

@ -0,0 +1,2 @@
BOARD="keyboardio_imago"
SKETCH="Imago"

@ -0,0 +1,192 @@
/* -*- mode: c++ -*-
* Imago.ino -- Example sketch for the Keyboardio Imago
* Copyright (C) 2018, 2019 Keyboard.io, Inc
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTabILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "Kaleidoscope.h"
#include "Kaleidoscope-Macros.h"
// Support for controlling the keyboard's LEDs
#include "Kaleidoscope-LEDControl.h"
// Support for the "Boot greeting" effect, which pulses the 'LED' button for 10s
// when the keyboard is connected to a computer (or that computer is powered on)
#include "Kaleidoscope-LEDEffect-BootGreeting.h"
// Support for LED modes that set all LEDs to a single color
#include "Kaleidoscope-LEDEffect-SolidColor.h"
// Support for an LED mode that makes all the LEDs 'breathe'
#include "Kaleidoscope-LEDEffect-Breathe.h"
#include "Kaleidoscope-LEDEffect-Chase.h"
// Support for LED modes that pulse the keyboard's LED in a rainbow pattern
#include "Kaleidoscope-LEDEffect-Rainbow.h"
// Support for host power management (suspend & wakeup)
#include "Kaleidoscope-HostPowerManagement.h"
// Support for magic combos (key chords that trigger an action)
#include "Kaleidoscope-MagicCombo.h"
// Support for USB quirks, like changing the key state report protocol
#include "Kaleidoscope-USB-Quirks.h"
enum { _QWERTY,
};
/* *INDENT-OFF* */
KEYMAPS(
[_QWERTY] = KEYMAP(
Key_F1, Key_Escape, Key_Backtick, Key_1, Key_2, Key_3, Key_4, Key_5, Key_6, Key_7, Key_8, Key_9, Key_0, Key_Minus, Key_Equals, Key_Backspace,
Key_F2, Key_Tab, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_LeftBracket, Key_RightBracket, Key_Backslash,
Key_F3, Key_Escape, Key_A, Key_S, Key_D, Key_F, Key_G, Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote, Key_Enter,
Key_F4, Key_LeftShift, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_UpArrow, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_RightShift, Key_LEDEffectNext,
Key_F5, Key_LeftControl,Key_LeftAlt, Key_LeftGui, Key_Backspace, Key_LeftArrow, Key_DownArrow, Key_RightArrow, Key_Space, Key_RightAlt, Key_Menu, Key_RightControl, Key_LEDEffectNext
));
/* *INDENT-ON* */
// These 'solid' color effect definitions define a rainbow of
// LED color modes calibrated to draw 500mA or less on the
// Keyboardio Model 01.
static kaleidoscope::plugin::LEDSolidColor solidRed(160, 0, 0);
static kaleidoscope::plugin::LEDSolidColor solidOrange(140, 70, 0);
static kaleidoscope::plugin::LEDSolidColor solidYellow(130, 100, 0);
static kaleidoscope::plugin::LEDSolidColor solidGreen(0, 160, 0);
static kaleidoscope::plugin::LEDSolidColor solidBlue(0, 70, 130);
static kaleidoscope::plugin::LEDSolidColor solidIndigo(0, 0, 170);
static kaleidoscope::plugin::LEDSolidColor solidViolet(130, 0, 120);
/** toggleLedsOnSuspendResume toggles the LEDs off when the host goes to sleep,
* and turns them back on when it wakes up.
*/
void toggleLedsOnSuspendResume(kaleidoscope::plugin::HostPowerManagement::Event event) {
switch (event) {
case kaleidoscope::plugin::HostPowerManagement::Suspend:
LEDControl.set_all_leds_to({0, 0, 0});
LEDControl.syncLeds();
LEDControl.paused = true;
break;
case kaleidoscope::plugin::HostPowerManagement::Resume:
LEDControl.paused = false;
LEDControl.refreshAll();
break;
case kaleidoscope::plugin::HostPowerManagement::Sleep:
break;
}
}
/** hostPowerManagementEventHandler dispatches power management events (suspend,
* resume, and sleep) to other functions that perform action based on these
* events.
*/
void hostPowerManagementEventHandler(kaleidoscope::plugin::HostPowerManagement::Event event) {
toggleLedsOnSuspendResume(event);
}
/** This 'enum' is a list of all the magic combos used by the Model 01's
* firmware The names aren't particularly important. What is important is that
* each is unique.
*
* These are the names of your magic combos. They will be used by the
* `USE_MAGIC_COMBOS` call below.
*/
enum {
// Toggle between Boot (6-key rollover; for BIOSes and early boot) and NKRO
// mode.
COMBO_TOGGLE_NKRO_MODE
};
/** A tiny wrapper, to be used by MagicCombo.
* This simply toggles the keyboard protocol via USBQuirks, and wraps it within
* a function with an unused argument, to match what MagicCombo expects.
*/
static void toggleKeyboardProtocol(uint8_t combo_index) {
USBQuirks.toggleKeyboardProtocol();
}
/** Magic combo list, a list of key combo and action pairs the firmware should
* recognise.
*/
USE_MAGIC_COMBOS({.action = toggleKeyboardProtocol,
// Left Fn + Esc + Shift
.keys = { R3C6, R2C6, R3C7 }
});
KALEIDOSCOPE_INIT_PLUGINS(Macros,
// LEDControl provides support for other LED modes
LEDControl,
// The rainbow effect changes the color of all of the keyboard's keys at the same time
// running through all the colors of the rainbow.
LEDRainbowEffect,
// The rainbow wave effect lights up your keyboard with all the colors of a rainbow
// and slowly moves the rainbow across your keyboard
LEDRainbowWaveEffect,
// The chase effect follows the adventure of a blue pixel which chases a red pixel across
// your keyboard. Spoiler: the blue pixel never catches the red pixel
LEDChaseEffect,
// These static effects turn your keyboard's LEDs a variety of colors
solidRed, solidOrange, solidYellow, solidGreen, solidBlue, solidIndigo, solidViolet,
// The breathe effect slowly pulses all of the LEDs on your keyboard
LEDBreatheEffect,
// The HostPowerManagement plugin allows us to turn LEDs off when then host
// goes to sleep, and resume them when it wakes up.
HostPowerManagement,
// The MagicCombo plugin lets you use key combinations to trigger custom
// actions - a bit like Macros, but triggered by pressing multiple keys at the
// same time.
MagicCombo,
// The USBQuirks plugin lets you do some things with USB that we aren't
// comfortable - or able - to do automatically, but can be useful
// nevertheless. Such as toggling the key report protocol between Boot (used
// by BIOSes) and Report (NKRO).
USBQuirks
);
void setup() {
Kaleidoscope.setup();
Serial.begin(9600);
}
void loop() {
Kaleidoscope.loop();
}

@ -0,0 +1,55 @@
# This stub makefile for a Kaleidoscope example pulls in all the targets
# required to build the example
UNAME_S := $(shell uname -s)
ifeq ($(UNAME_S),Darwin)
SKETCHBOOK_DIR ?= $(HOME)/Documents/Arduino
PACKAGE_DIR ?= $(HOME)/Library/Arduino15
else
SKETCHBOOK_DIR ?= $(HOME)/Arduino
PACKAGE_DIR ?= $(HOME)/.arduino15
endif
ARDUINO_INSTALLED_ENV=$(shell ls -dt $(PACKAGE_DIR)/packages/keyboardio/hardware/avr 2>/dev/null |head -n 1)
MANUALLY_INSTALLED_ENV=$(shell ls -dt $(SKETCHBOOK_DIR)/hardware/keyboardio/avr 2>/dev/null |head -n 1)
ifneq ("$(wildcard $(ARDUINO_INSTALLED_ENV)/boards.txt)","")
ifneq ("$(wildcard $(MANUALLY_INSTALLED_ENV)/boards.txt)","")
$(info ***************************************************************************)
$(info It appears that you have installed two copies of Kaleidoscope. One copy was)
$(info installed using Arduino's "Board Manager", while the other was installed by)
$(info hand, probably using "git".)
$(info )
$(info This will likely cause some trouble as you try to build keyboard firmware)
$(info using Kaleidoscope. You may want to remove either: )
$(info )
$(info $(PACKAGE_DIR)/packages/keyboardio/ which was installed using Arduino)
$(info )
$(info or)
$(info )
$(info $(SKETCHBOOK_DIR)/hardware/keyboardio/ which was installed by hand.)
$(info )
$(info ***************************************************************************)
$(info )
endif
BOARD_HARDWARE_PATH = $(ARDUINO_INSTALLED_ENV)
KALEIDOSCOPE_PLUGIN_MAKEFILE_DIR ?= build-tools/makefiles/
KALEIDOSCOPE_BUILDER_DIR ?= $(ARDUINO_INSTALLED_ENV)/libraries/Kaleidoscope/bin/
endif
BOARD_HARDWARE_PATH ?= $(SKETCHBOOK_DIR)/hardware
KALEIDOSCOPE_PLUGIN_MAKEFILE_DIR ?= keyboardio/avr/build-tools/makefiles/
include $(BOARD_HARDWARE_PATH)/$(KALEIDOSCOPE_PLUGIN_MAKEFILE_DIR)/rules.mk

@ -0,0 +1,21 @@
/* -*- mode: c++ -*-
* Kaleidoscope-Hardware-Keyboardio-Imago -- Keyboardio Imago hardware support for Kaleidoscope
* Copyright (C) 2018, 2019 Keyboard.io, Inc
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "kaleidoscope/device/keyboardio/Imago.h"

@ -0,0 +1,191 @@
/* -*- mode: c++ -*-
* Kaleidoscope-Hardware-Keyboardio-Imago -- Imago hardware support for Kaleidoscope
* Copyright (C) 2018, 2019 Keyboard.io, Inc
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of version 3 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef ARDUINO_AVR_KEYBOARDIO_IMAGO
#include <Kaleidoscope.h>
extern "C" {
#include "twi.h"
}
#define ELEMENTS(arr) (sizeof(arr) / sizeof((arr)[0]))
#define LED_DRIVER_ADDR 0x30
namespace kaleidoscope {
namespace device {
namespace keyboardio {
static constexpr uint8_t CMD_SET_REGISTER = 0xFD;
static constexpr uint8_t CMD_WRITE_ENABLE = 0xFE;
static constexpr uint8_t WRITE_ENABLE_ONCE = 0b11000101;
static constexpr uint8_t LED_REGISTER_PWM0 = 0x00;
static constexpr uint8_t LED_REGISTER_PWM1 = 0x01;
static constexpr uint8_t LED_REGISTER_DATA0 = 0x02;
static constexpr uint8_t LED_REGISTER_DATA1 = 0x03;
static constexpr uint8_t LED_REGISTER_CONTROL = 0x04;
static constexpr uint8_t LED_REGISTER_PWM0_SIZE = 0xB4;
static constexpr uint8_t LED_REGISTER_PWM1_SIZE = 0xAB;
static constexpr uint8_t LED_REGISTER_DATA0_SIZE = 0xB4;
static constexpr uint8_t LED_REGISTER_DATA1_SIZE = 0xAB;
static constexpr uint8_t LED_REGISTER_DATA_LARGEST = LED_REGISTER_DATA0_SIZE;
AVR_KEYSCANNER_BOILERPLATE
bool ImagoLEDDriver::isLEDChanged = true;
cRGB ImagoLEDDriver::led_data[];
#define NOLED 254
static constexpr uint8_t key_led_map[5][16] PROGMEM = {
{ 104, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 115, 12, 116},
{ 91, 13, NOLED, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 102, 15, 103},
{ 78, 26, 27, 28, 29, 30, 31, NOLED, 33, 34, 35, 36, 37, 89, 38, NOLED},
{ 65, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, NOLED, 90},
{ 52, 66, 53, 54, NOLED, 56, 57, 71, 59, NOLED, 61, 62, 63, 64, NOLED, 77}
};
void ImagoLEDDriver::setup() {
setAllPwmTo(0xFF);
selectRegister(LED_REGISTER_CONTROL);
twiSend(LED_DRIVER_ADDR, 0x01, 0xFF); //global current
twiSend(LED_DRIVER_ADDR, 0x00, 0x01); //normal operation
}
void ImagoLEDDriver::twiSend(uint8_t addr, uint8_t Reg_Add, uint8_t Reg_Dat) {
uint8_t data[] = {Reg_Add, Reg_Dat };
uint8_t result = twi_writeTo(addr, data, ELEMENTS(data), 1, 0);
}
void ImagoLEDDriver::unlockRegister(void) {
twiSend(LED_DRIVER_ADDR, CMD_WRITE_ENABLE, WRITE_ENABLE_ONCE); //unlock
}
void ImagoLEDDriver::selectRegister(uint8_t page) {
// Registers automatically get locked at startup and after a given write
// It'd be nice to disable that.
unlockRegister();
twiSend(LED_DRIVER_ADDR, CMD_SET_REGISTER, page);
}
void ImagoLEDDriver::setCrgbAt(uint8_t i, cRGB crgb) {
if (!Kaleidoscope.device().LEDs().isValid(i))
return;
cRGB oldColor = getCrgbAt(i);
isLEDChanged |= !(oldColor.r == crgb.r && oldColor.g == crgb.g && oldColor.b == crgb.b);
led_data[i] = crgb;
}
uint8_t ImagoLEDDriver::getLedIndex(uint8_t key_offset) {
return pgm_read_byte(key_led_map + key_offset);
}
cRGB ImagoLEDDriver::getCrgbAt(uint8_t i) {
if (!Kaleidoscope.device().LEDs().isValid(i))
return {0, 0, 0};
return led_data[i];
}
void ImagoLEDDriver::syncLeds() {
// if (!isLEDChanged)
// return;
uint8_t data[LED_REGISTER_DATA_LARGEST + 1];
data[0] = 0;// the address of the first byte to copy in
uint8_t last_led = 0;
// Write the first LED bank
selectRegister(LED_REGISTER_DATA0);
for (auto i = 1; i < LED_REGISTER_DATA0_SIZE; i += 3) {
data[i] = led_data[last_led].b;
data[i + 1] = led_data[last_led].g;
data[i + 2] = led_data[last_led].r;
last_led++;
}
twi_writeTo(LED_DRIVER_ADDR, data, LED_REGISTER_DATA0_SIZE + 1, 1, 0);
// Don't reset "Last LED", because this is just us picking up from the last bank
// TODO - we don't use all 117 LEDs on the Imago, so we can probably stop writing earlier
// Write the second LED bank
// For space efficiency, we reuse the LED sending buffer
// The twi library should never send more than the number of elements
// we say to send it.
// The page 2 version has 180 elements. The page 3 version has only 171.
selectRegister(LED_REGISTER_DATA1);
for (auto i = 1; i < LED_REGISTER_DATA1_SIZE; i += 3) {
data[i] = led_data[last_led].b;
data[i + 1] = led_data[last_led].g;
data[i + 2] = led_data[last_led].r;
last_led++;
}
twi_writeTo(LED_DRIVER_ADDR, data, LED_REGISTER_DATA1_SIZE + 1, 1, 0);
isLEDChanged = false;
}
void ImagoLEDDriver::setAllPwmTo(uint8_t step) {
selectRegister(LED_REGISTER_PWM0);
uint8_t data[0xB5] = {};
data[0] = 0;
// PWM Register 0 is 0x00 to 0xB3
for (auto i = 1; i <= 0xB4; i++) {
data[i] = step;
}
twi_writeTo(LED_DRIVER_ADDR, data, 0xB5, 1, 0);
selectRegister(LED_REGISTER_PWM1);
// PWM Register 1 is 0x00 to 0xAA
for (auto i = 1; i <= LED_REGISTER_PWM1_SIZE; i++) {
data[i] = step;
}
twi_writeTo(LED_DRIVER_ADDR, data, 0xAC, 1, 0);
}
void Imago::setup() {
digitalWrite(MOSI, HIGH);
digitalWrite(SS, HIGH);
uint8_t twi_uninitialized = 1;
if (twi_uninitialized--) {
twi_init();
}
TWBR = 10;
kaleidoscope::device::ATMega32U4Keyboard<ImagoProps>::setup();
}
}
}
}
#endif

@ -0,0 +1,102 @@
/* -*- mode: c++ -*-
* Kaleidoscope-Hardware-Keyboardio-Imago -- Imago hardware support for Kaleidoscope
* Copyright (C) 2018, 2019 Keyboard.io, Inc
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of version 3 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#ifdef ARDUINO_AVR_KEYBOARDIO_IMAGO
#include <Arduino.h>
struct cRGB {
uint8_t b;
uint8_t g;
uint8_t r;
};
#define CRGB(r,g,b) (cRGB){b, g, r}
#include "kaleidoscope/driver/keyscanner/AVR.h"
#include "kaleidoscope/driver/led/Base.h"
#include "kaleidoscope/driver/bootloader/avr/Caterina.h"
#include "kaleidoscope/device/ATMega32U4Keyboard.h"
namespace kaleidoscope {
namespace device {
namespace keyboardio {
struct ImagoLEDDriverProps: public kaleidoscope::driver::led::BaseProps {
static constexpr uint8_t led_count = 78;
};
class ImagoLEDDriver : public kaleidoscope::driver::led::Base<ImagoLEDDriverProps> {
public:
static void setup();
static void syncLeds();
static void setCrgbAt(uint8_t i, cRGB crgb);
static cRGB getCrgbAt(uint8_t i);
static uint8_t getLedIndex(uint8_t key_offset);
static cRGB led_data[117]; // 117 is the number of LEDs the chip drives
// until we clean stuff up a bit, it's easiest to just have the whole struct around
private:
static bool isLEDChanged;
static void selectRegister(uint8_t);
static void unlockRegister();
static void setAllPwmTo(uint8_t);
static void twiSend(uint8_t addr, uint8_t Reg_Add, uint8_t Reg_Dat);
};
struct ImagoProps : kaleidoscope::device::ATMega32U4KeyboardProps {
struct KeyScannerProps : public kaleidoscope::driver::keyscanner::AVRProps {
AVR_KEYSCANNER_PROPS(
ROW_PIN_LIST({ PIN_F6, PIN_F5, PIN_F4, PIN_F1, PIN_F0}),
COL_PIN_LIST({ PIN_B2, PIN_B7, PIN_E2, PIN_C7, PIN_C6, PIN_B6, PIN_B5, PIN_B4, PIN_D7, PIN_D6, PIN_D4, PIN_D5, PIN_D3, PIN_D2, PIN_E6, PIN_F7})
);
};
typedef kaleidoscope::driver::keyscanner::AVR<KeyScannerProps> KeyScanner;
typedef ImagoLEDDriverProps LEDDriverProps;
typedef ImagoLEDDriver LEDDriver;
typedef kaleidoscope::driver::bootloader::avr::Caterina BootLoader;
};
class Imago: public kaleidoscope::device::ATMega32U4Keyboard<ImagoProps> {
public:
void setup();
};
#define PER_KEY_DATA(dflt, \
R0C0, R0C1, R0C2, R0C3, R0C4, R0C5, R0C6, R0C7, R0C8, R0C9, R0C10, R0C11, R0C12, R0C13, R0C14, R0C15, \
R1C0, R1C1, R1C3, R1C4, R1C5, R1C6, R1C7, R1C8, R1C9, R1C10, R1C11, R1C12, R1C13, R1C14, R1C15, \
R2C0, R2C1, R2C2, R2C3, R2C4, R2C5, R2C6, R2C8, R2C9, R2C10, R2C11, R2C12, R2C13, R2C14, \
R3C0, R3C1, R3C2, R3C3, R3C4, R3C5, R3C6, R3C7, R3C8, R3C9, R3C10, R3C11, R3C12, R3C13, R3C15, \
R4C0, R4C1, R4C2, R4C3, R4C5, R4C6, R4C7, R4C8, R4C10, R4C11, R4C12, R4C13, R4C15 \
,... ) \
R0C0, R0C1, R0C2, R0C3, R0C4, R0C5, R0C6, R0C7, R0C8, R0C9, R0C10, R0C11, R0C12, R0C13, R0C14, R0C15, \
R1C0, R1C1, XXX, R1C3, R1C4, R1C5, R1C6, R1C7, R1C8, R1C9, R1C10, R1C11, R1C12, R1C13, R1C14, R1C15, \
R2C0, R2C1, R2C2, R2C3, R2C4, R2C5, R2C6, XXX, R2C8, R2C9, R2C10, R2C11, R2C12, R2C13, R2C14, XXX , \
R3C0, R3C1, R3C2, R3C3, R3C4, R3C5, R3C6, R3C7, R3C8, R3C9, R3C10, R3C11, R3C12, R3C13, XXX, R3C15, \
R4C0, R4C1, R4C2, R4C3, XXX, R4C5, R4C6, R4C7, R4C8, XXX, R4C10, R4C11, R4C12, R4C13, XXX, R4C15
}
}
typedef kaleidoscope::device::keyboardio::Imago Device;
}
#endif

@ -0,0 +1,561 @@
/*
twi.c - TWI/I2C library for Wiring & Arduino
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version.
This library is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.
You should have received a copy of the GNU Lesser General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.
Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts
*/
#define ENABLE_TWI_SLAVE_MODE 0
#include <math.h>
#include <stdlib.h>
#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <compat/twi.h>
// #include "Arduino.h" // for digitalWrite
#define true 1
#define false 0
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
#include "pins_arduino.h"
#include "twi.h"
static volatile uint8_t twi_state;
static volatile uint8_t twi_slarw;
static volatile uint8_t twi_sendStop; // should the transaction end with a stop
static volatile uint8_t twi_inRepStart; // in the middle of a repeated start
static void (*twi_onSlaveTransmit)(void);
static void (*twi_onSlaveReceive)(uint8_t*, int);
static uint8_t twi_masterBuffer[TWI_BUFFER_LENGTH];
static volatile uint8_t twi_masterBufferIndex;
static volatile uint8_t twi_masterBufferLength;
static uint8_t twi_txBuffer[TWI_BUFFER_LENGTH];
static volatile uint8_t twi_txBufferIndex;
static volatile uint8_t twi_txBufferLength;
#if ENABLE_TWI_SLAVE_MODE
static uint8_t twi_rxBuffer[TWI_BUFFER_LENGTH];
static volatile uint8_t twi_rxBufferIndex;
#endif
static volatile uint8_t twi_error;
/*
* Function twi_init
* Desc readys twi pins and sets twi bitrate
* Input none
* Output none
*/
void twi_init(void) {
// initialize state
twi_state = TWI_READY;
twi_sendStop = true; // default value
twi_inRepStart = false;
// activate internal pullups for twi.
// digitalWrite(SDA, 1);
PORTD |= _BV(0);
// digitalWrite(SCL, 1);
PORTD |= _BV(1);
// initialize twi prescaler and bit rate
cbi(TWSR, TWPS0);
cbi(TWSR, TWPS1);
TWBR = ((F_CPU / TWI_FREQ) - 16) / 2;
/* twi bit rate formula from atmega128 manual pg 204
SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))
note: TWBR should be 10 or higher for master mode
It is 72 for a 16mhz Wiring board with 100kHz TWI */
// enable twi module, acks, and twi interrupt
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA);
}
/*
* Function twi_disable
* Desc disables twi pins
* Input none
* Output none
*/
void twi_disable(void) {
// disable twi module, acks, and twi interrupt
TWCR &= ~(_BV(TWEN) | _BV(TWIE) | _BV(TWEA));
// deactivate internal pullups for twi.
// digitalWrite(SDA, 0);
PORTD &= ~_BV(0);
// digitalWrite(SCL, 0);
PORTD &= ~_BV(1);
}
/*
* Function twi_slaveInit
* Desc sets slave address and enables interrupt
* Input none
* Output none
*/
void twi_setAddress(uint8_t address) {
// set twi slave address (skip over TWGCE bit)
TWAR = address << 1;
}
/*
* Function twi_setClock
* Desc sets twi bit rate
* Input Clock Frequency
* Output none
*/
void twi_setFrequency(uint32_t frequency) {
TWBR = ((F_CPU / frequency) - 16) / 2;
/* twi bit rate formula from atmega128 manual pg 204
SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))
note: TWBR should be 10 or higher for master mode
It is 72 for a 16mhz Wiring board with 100kHz TWI */
}
/*
* Function twi_readFrom
* Desc attempts to become twi bus master and read a
* series of bytes from a device on the bus
* Input address: 7bit i2c device address
* data: pointer to byte array
* length: number of bytes to read into array
* sendStop: Boolean indicating whether to send a stop at the end
* Output number of bytes read
*/
uint8_t twi_readFrom(uint8_t address, uint8_t* data, uint8_t length, uint8_t sendStop) {
uint8_t i;
// ensure data will fit into buffer
if (TWI_BUFFER_LENGTH < length) {
return 0;
}
// wait until twi is ready, become master receiver
while (TWI_READY != twi_state) {
continue;
}
twi_state = TWI_MRX;
twi_sendStop = sendStop;
// reset error state (0xFF.. no error occured)
twi_error = 0xFF;
// initialize buffer iteration vars
twi_masterBufferIndex = 0;
twi_masterBufferLength = length - 1; // This is not intuitive, read on...
// On receive, the previously configured ACK/NACK setting is transmitted in
// response to the received byte before the interrupt is signalled.
// Therefor we must actually set NACK when the _next_ to last byte is
// received, causing that NACK to be sent in response to receiving the last
// expected byte of data.
// build sla+w, slave device address + w bit
twi_slarw = TW_READ;
twi_slarw |= address << 1;
if (true == twi_inRepStart) {
// if we're in the repeated start state, then we've already sent the start,
// (@@@ we hope), and the TWI statemachine is just waiting for the address byte.
// We need to remove ourselves from the repeated start state before we enable interrupts,
// since the ISR is ASYNC, and we could get confused if we hit the ISR before cleaning
// up. Also, don't enable the START interrupt. There may be one pending from the
// repeated start that we sent ourselves, and that would really confuse things.
twi_inRepStart = false; // remember, we're dealing with an ASYNC ISR
do {
TWDR = twi_slarw;
} while (TWCR & _BV(TWWC));
TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); // enable INTs, but not START
} else
// send start condition
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTA);
// wait for read operation to complete
while (TWI_MRX == twi_state) {
continue;
}
if (twi_masterBufferIndex < length)
length = twi_masterBufferIndex;
// copy twi buffer to data
for (i = 0; i < length; ++i) {
data[i] = twi_masterBuffer[i];
}
return length;
}
/*
* Function twi_writeTo
* Desc attempts to become twi bus master and write a
* series of bytes to a device on the bus
* Input address: 7bit i2c device address
* data: pointer to byte array
* length: number of bytes in array
* wait: boolean indicating to wait for write or not
* sendStop: boolean indicating whether or not to send a stop at the end
* Output 0 .. success
* 1 .. length to long for buffer
* 2 .. address send, NACK received
* 3 .. data send, NACK received
* 4 .. other twi error (lost bus arbitration, bus error, ..)
*/
uint8_t twi_writeTo(uint8_t address, uint8_t* data, uint8_t length, uint8_t wait, uint8_t sendStop) {
uint8_t i;
// ensure data will fit into buffer
if (TWI_BUFFER_LENGTH < length) {
return 1;
}
// wait until twi is ready, become master transmitter
while (TWI_READY != twi_state) {
continue;
}
twi_state = TWI_MTX;
twi_sendStop = sendStop;
// reset error state (0xFF.. no error occured)
twi_error = 0xFF;
// initialize buffer iteration vars
twi_masterBufferIndex = 0;
twi_masterBufferLength = length;
// copy data to twi buffer
for (i = 0; i < length; ++i) {
twi_masterBuffer[i] = data[i];
}
// build sla+w, slave device address + w bit
twi_slarw = TW_WRITE;
twi_slarw |= address << 1;
// if we're in a repeated start, then we've already sent the START
// in the ISR. Don't do it again.
//
if (true == twi_inRepStart) {
// if we're in the repeated start state, then we've already sent the start,
// (@@@ we hope), and the TWI statemachine is just waiting for the address byte.
// We need to remove ourselves from the repeated start state before we enable interrupts,
// since the ISR is ASYNC, and we could get confused if we hit the ISR before cleaning
// up. Also, don't enable the START interrupt. There may be one pending from the
// repeated start that we sent outselves, and that would really confuse things.
twi_inRepStart = false; // remember, we're dealing with an ASYNC ISR
do {
TWDR = twi_slarw;
} while (TWCR & _BV(TWWC));
TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); // enable INTs, but not START
} else
// send start condition
TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE) | _BV(TWSTA); // enable INTs
// wait for write operation to complete
while (wait && (TWI_MTX == twi_state)) {
continue;
}
switch (twi_error) {
case 0xFF:
return 0; // success
case TW_MT_SLA_NACK:
return 2; // error: address send, nack received
case TW_MT_DATA_NACK:
return 3; // error: data send, nack received
default:
return 4; // other twi error
}
}
/*
* Function twi_transmit
* Desc fills slave tx buffer with data
* must be called in slave tx event callback
* Input data: pointer to byte array
* length: number of bytes in array
* Output 1 length too long for buffer
* 2 not slave transmitter
* 0 ok
*/
uint8_t twi_transmit(const uint8_t* data, uint8_t length) {
uint8_t i;
// ensure data will fit into buffer
if (TWI_BUFFER_LENGTH < (twi_txBufferLength + length)) {
return 1;
}
// ensure we are currently a slave transmitter
if (TWI_STX != twi_state) {
return 2;
}
// set length and copy data into tx buffer
for (i = 0; i < length; ++i) {
twi_txBuffer[twi_txBufferLength + i] = data[i];
}
twi_txBufferLength += length;
return 0;
}
/*
* Function twi_attachSlaveRxEvent
* Desc sets function called before a slave read operation
* Input function: callback function to use
* Output none
*/
void twi_attachSlaveRxEvent(void (*function)(uint8_t*, int)) {
twi_onSlaveReceive = function;
}
/*
* Function twi_attachSlaveTxEvent
* Desc sets function called before a slave write operation
* Input function: callback function to use
* Output none
*/
void twi_attachSlaveTxEvent(void (*function)(void)) {
twi_onSlaveTransmit = function;
}
/*
* Function twi_reply
* Desc sends byte or readys receive line
* Input ack: byte indicating to ack or to nack
* Output none
*/
void twi_reply(uint8_t ack) {
// transmit master read ready signal, with or without ack
if (ack) {
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT) | _BV(TWEA);
} else {
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT);
}
}
/*
* Function twi_stop
* Desc relinquishes bus master status
* Input none
* Output none
*/
void twi_stop(void) {
// send stop condition
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTO);
// wait for stop condition to be exectued on bus
// TWINT is not set after a stop condition!
while (TWCR & _BV(TWSTO)) {
continue;
}
// update twi state
twi_state = TWI_READY;
}
/*
* Function twi_releaseBus
* Desc releases bus control
* Input none
* Output none
*/
void twi_releaseBus(void) {
// release bus
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT);
// update twi state
twi_state = TWI_READY;
}
ISR(TWI_vect) {
switch (TW_STATUS) {
// All Master
case TW_START: // sent start condition
case TW_REP_START: // sent repeated start condition
// copy device address and r/w bit to output register and ack
TWDR = twi_slarw;
twi_reply(1);
break;
// Master Transmitter
case TW_MT_SLA_ACK: // slave receiver acked address
case TW_MT_DATA_ACK: // slave receiver acked data
// if there is data to send, send it, otherwise stop
if (twi_masterBufferIndex < twi_masterBufferLength) {
// copy data to output register and ack
TWDR = twi_masterBuffer[twi_masterBufferIndex++];
twi_reply(1);
} else {
if (twi_sendStop)
twi_stop();
else {
twi_inRepStart = true; // we're gonna send the START
// don't enable the interrupt. We'll generate the start, but we
// avoid handling the interrupt until we're in the next transaction,
// at the point where we would normally issue the start.
TWCR = _BV(TWINT) | _BV(TWSTA) | _BV(TWEN) ;
twi_state = TWI_READY;
}
}
break;
case TW_MT_SLA_NACK: // address sent, nack received
twi_error = TW_MT_SLA_NACK;
twi_stop();
break;
case TW_MT_DATA_NACK: // data sent, nack received
twi_error = TW_MT_DATA_NACK;
twi_stop();
break;
case TW_MT_ARB_LOST: // lost bus arbitration
twi_error = TW_MT_ARB_LOST;
twi_releaseBus();
break;
// Master Receiver
case TW_MR_DATA_ACK: // data received, ack sent
// put byte into buffer
twi_masterBuffer[twi_masterBufferIndex++] = TWDR;
/* intentionally fall through */
case TW_MR_SLA_ACK: // address sent, ack received
// ack if more bytes are expected, otherwise nack
if (twi_masterBufferIndex < twi_masterBufferLength) {
twi_reply(1);
} else {
twi_reply(0);
}
break;
case TW_MR_DATA_NACK: // data received, nack sent
// put final byte into buffer
twi_masterBuffer[twi_masterBufferIndex++] = TWDR;
if (twi_sendStop)
twi_stop();
else {
twi_inRepStart = true; // we're gonna send the START
// don't enable the interrupt. We'll generate the start, but we
// avoid handling the interrupt until we're in the next transaction,
// at the point where we would normally issue the start.
TWCR = _BV(TWINT) | _BV(TWSTA) | _BV(TWEN) ;
twi_state = TWI_READY;
}
break;
case TW_MR_SLA_NACK: // address sent, nack received
twi_stop();
break;
// TW_MR_ARB_LOST handled by TW_MT_ARB_LOST case
#if ENABLE_TWI_SLAVE_MODE
// Slave Receiver
case TW_SR_SLA_ACK: // addressed, returned ack
case TW_SR_GCALL_ACK: // addressed generally, returned ack
case TW_SR_ARB_LOST_SLA_ACK: // lost arbitration, returned ack
case TW_SR_ARB_LOST_GCALL_ACK: // lost arbitration, returned ack
// enter slave receiver mode
twi_state = TWI_SRX;
// indicate that rx buffer can be overwritten and ack
twi_rxBufferIndex = 0;
twi_reply(1);
break;
case TW_SR_DATA_ACK: // data received, returned ack
case TW_SR_GCALL_DATA_ACK: // data received generally, returned ack
// if there is still room in the rx buffer
if (twi_rxBufferIndex < TWI_BUFFER_LENGTH) {
// put byte in buffer and ack
twi_rxBuffer[twi_rxBufferIndex++] = TWDR;
twi_reply(1);
} else {
// otherwise nack
twi_reply(0);
}
break;
case TW_SR_STOP: // stop or repeated start condition received
// ack future responses and leave slave receiver state
twi_releaseBus();
// put a null char after data if there's room
if (twi_rxBufferIndex < TWI_BUFFER_LENGTH) {
twi_rxBuffer[twi_rxBufferIndex] = '\0';
}
// callback to user defined callback
twi_onSlaveReceive(twi_rxBuffer, twi_rxBufferIndex);
// since we submit rx buffer to "wire" library, we can reset it
twi_rxBufferIndex = 0;
break;
case TW_SR_DATA_NACK: // data received, returned nack
case TW_SR_GCALL_DATA_NACK: // data received generally, returned nack
// nack back at master
twi_reply(0);
break;
// Slave Transmitter
case TW_ST_SLA_ACK: // addressed, returned ack
case TW_ST_ARB_LOST_SLA_ACK: // arbitration lost, returned ack
// enter slave transmitter mode
twi_state = TWI_STX;
// ready the tx buffer index for iteration
twi_txBufferIndex = 0;
// set tx buffer length to be zero, to verify if user changes it
twi_txBufferLength = 0;
// request for txBuffer to be filled and length to be set
// note: user must call twi_transmit(bytes, length) to do this
twi_onSlaveTransmit();
// if they didn't change buffer & length, initialize it
if (0 == twi_txBufferLength) {
twi_txBufferLength = 1;
twi_txBuffer[0] = 0x00;
}
// transmit first byte from buffer, fall
case TW_ST_DATA_ACK: // byte sent, ack returned
// copy data to output register
TWDR = twi_txBuffer[twi_txBufferIndex++];
// if there is more to send, ack, otherwise nack
if (twi_txBufferIndex < twi_txBufferLength) {
twi_reply(1);
} else {
twi_reply(0);
}
break;
case TW_ST_DATA_NACK: // received nack, we are done
case TW_ST_LAST_DATA: // received ack, but we are done already!
// ack future responses
twi_reply(1);
// leave slave receiver state
twi_state = TWI_READY;
break;
#endif
// All
case TW_NO_INFO: // no state information
break;
case TW_BUS_ERROR: // bus error, illegal stop/start
twi_error = TW_BUS_ERROR;
twi_stop();
break;
}
}

@ -0,0 +1,53 @@
/*
twi.h - TWI/I2C library for Wiring & Arduino
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version.
This library is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.
You should have received a copy of the GNU Lesser General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef twi_h
#define twi_h
#include <inttypes.h>
//#define ATMEGA8
#ifndef TWI_FREQ
#define TWI_FREQ 100000L
#endif
#ifndef TWI_BUFFER_LENGTH
#define TWI_BUFFER_LENGTH 192
#endif
#define TWI_READY 0
#define TWI_MRX 1
#define TWI_MTX 2
#define TWI_SRX 3
#define TWI_STX 4
void twi_init(void);
void twi_disable(void);
void twi_setAddress(uint8_t);
void twi_setFrequency(uint32_t);
uint8_t twi_readFrom(uint8_t, uint8_t*, uint8_t, uint8_t);
uint8_t twi_writeTo(uint8_t, uint8_t*, uint8_t, uint8_t, uint8_t);
uint8_t twi_transmit(const uint8_t*, uint8_t);
void twi_attachSlaveRxEvent(void (*)(uint8_t*, int));
void twi_attachSlaveTxEvent(void (*)(void));
void twi_reply(uint8_t);
void twi_stop(void);
void twi_releaseBus(void);
#endif
Loading…
Cancel
Save