You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1621 lines
50 KiB
1621 lines
50 KiB
// Copyright 2007, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
// Google Test - The Google C++ Testing and Mocking Framework
|
|
//
|
|
// This file tests the universal value printer.
|
|
|
|
#include <ctype.h>
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
#include <algorithm>
|
|
#include <deque>
|
|
#include <forward_list>
|
|
#include <list>
|
|
#include <map>
|
|
#include <set>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "gtest/gtest-printers.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
// Some user-defined types for testing the universal value printer.
|
|
|
|
// An anonymous enum type.
|
|
enum AnonymousEnum {
|
|
kAE1 = -1,
|
|
kAE2 = 1
|
|
};
|
|
|
|
// An enum without a user-defined printer.
|
|
enum EnumWithoutPrinter {
|
|
kEWP1 = -2,
|
|
kEWP2 = 42
|
|
};
|
|
|
|
// An enum with a << operator.
|
|
enum EnumWithStreaming {
|
|
kEWS1 = 10
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream& os, EnumWithStreaming e) {
|
|
return os << (e == kEWS1 ? "kEWS1" : "invalid");
|
|
}
|
|
|
|
// An enum with a PrintTo() function.
|
|
enum EnumWithPrintTo {
|
|
kEWPT1 = 1
|
|
};
|
|
|
|
void PrintTo(EnumWithPrintTo e, std::ostream* os) {
|
|
*os << (e == kEWPT1 ? "kEWPT1" : "invalid");
|
|
}
|
|
|
|
// A class implicitly convertible to BiggestInt.
|
|
class BiggestIntConvertible {
|
|
public:
|
|
operator ::testing::internal::BiggestInt() const { return 42; }
|
|
};
|
|
|
|
// A user-defined unprintable class template in the global namespace.
|
|
template <typename T>
|
|
class UnprintableTemplateInGlobal {
|
|
public:
|
|
UnprintableTemplateInGlobal() : value_() {}
|
|
private:
|
|
T value_;
|
|
};
|
|
|
|
// A user-defined streamable type in the global namespace.
|
|
class StreamableInGlobal {
|
|
public:
|
|
virtual ~StreamableInGlobal() {}
|
|
};
|
|
|
|
inline void operator<<(::std::ostream& os, const StreamableInGlobal& /* x */) {
|
|
os << "StreamableInGlobal";
|
|
}
|
|
|
|
void operator<<(::std::ostream& os, const StreamableInGlobal* /* x */) {
|
|
os << "StreamableInGlobal*";
|
|
}
|
|
|
|
namespace foo {
|
|
|
|
// A user-defined unprintable type in a user namespace.
|
|
class UnprintableInFoo {
|
|
public:
|
|
UnprintableInFoo() : z_(0) { memcpy(xy_, "\xEF\x12\x0\x0\x34\xAB\x0\x0", 8); }
|
|
double z() const { return z_; }
|
|
private:
|
|
char xy_[8];
|
|
double z_;
|
|
};
|
|
|
|
// A user-defined printable type in a user-chosen namespace.
|
|
struct PrintableViaPrintTo {
|
|
PrintableViaPrintTo() : value() {}
|
|
int value;
|
|
};
|
|
|
|
void PrintTo(const PrintableViaPrintTo& x, ::std::ostream* os) {
|
|
*os << "PrintableViaPrintTo: " << x.value;
|
|
}
|
|
|
|
// A type with a user-defined << for printing its pointer.
|
|
struct PointerPrintable {
|
|
};
|
|
|
|
::std::ostream& operator<<(::std::ostream& os,
|
|
const PointerPrintable* /* x */) {
|
|
return os << "PointerPrintable*";
|
|
}
|
|
|
|
// A user-defined printable class template in a user-chosen namespace.
|
|
template <typename T>
|
|
class PrintableViaPrintToTemplate {
|
|
public:
|
|
explicit PrintableViaPrintToTemplate(const T& a_value) : value_(a_value) {}
|
|
|
|
const T& value() const { return value_; }
|
|
private:
|
|
T value_;
|
|
};
|
|
|
|
template <typename T>
|
|
void PrintTo(const PrintableViaPrintToTemplate<T>& x, ::std::ostream* os) {
|
|
*os << "PrintableViaPrintToTemplate: " << x.value();
|
|
}
|
|
|
|
// A user-defined streamable class template in a user namespace.
|
|
template <typename T>
|
|
class StreamableTemplateInFoo {
|
|
public:
|
|
StreamableTemplateInFoo() : value_() {}
|
|
|
|
const T& value() const { return value_; }
|
|
private:
|
|
T value_;
|
|
};
|
|
|
|
template <typename T>
|
|
inline ::std::ostream& operator<<(::std::ostream& os,
|
|
const StreamableTemplateInFoo<T>& x) {
|
|
return os << "StreamableTemplateInFoo: " << x.value();
|
|
}
|
|
|
|
// A user-defined streamable but recursivly-defined container type in
|
|
// a user namespace, it mimics therefore std::filesystem::path or
|
|
// boost::filesystem::path.
|
|
class PathLike {
|
|
public:
|
|
struct iterator {
|
|
typedef PathLike value_type;
|
|
|
|
iterator& operator++();
|
|
PathLike& operator*();
|
|
};
|
|
|
|
using value_type = char;
|
|
using const_iterator = iterator;
|
|
|
|
PathLike() {}
|
|
|
|
iterator begin() const { return iterator(); }
|
|
iterator end() const { return iterator(); }
|
|
|
|
friend ::std::ostream& operator<<(::std::ostream& os, const PathLike&) {
|
|
return os << "Streamable-PathLike";
|
|
}
|
|
};
|
|
|
|
} // namespace foo
|
|
|
|
namespace testing {
|
|
namespace gtest_printers_test {
|
|
|
|
using ::std::deque;
|
|
using ::std::list;
|
|
using ::std::make_pair;
|
|
using ::std::map;
|
|
using ::std::multimap;
|
|
using ::std::multiset;
|
|
using ::std::pair;
|
|
using ::std::set;
|
|
using ::std::vector;
|
|
using ::testing::PrintToString;
|
|
using ::testing::internal::FormatForComparisonFailureMessage;
|
|
using ::testing::internal::ImplicitCast_;
|
|
using ::testing::internal::NativeArray;
|
|
using ::testing::internal::RE;
|
|
using ::testing::internal::RelationToSourceReference;
|
|
using ::testing::internal::Strings;
|
|
using ::testing::internal::UniversalPrint;
|
|
using ::testing::internal::UniversalPrinter;
|
|
using ::testing::internal::UniversalTersePrint;
|
|
using ::testing::internal::UniversalTersePrintTupleFieldsToStrings;
|
|
|
|
// Prints a value to a string using the universal value printer. This
|
|
// is a helper for testing UniversalPrinter<T>::Print() for various types.
|
|
template <typename T>
|
|
std::string Print(const T& value) {
|
|
::std::stringstream ss;
|
|
UniversalPrinter<T>::Print(value, &ss);
|
|
return ss.str();
|
|
}
|
|
|
|
// Prints a value passed by reference to a string, using the universal
|
|
// value printer. This is a helper for testing
|
|
// UniversalPrinter<T&>::Print() for various types.
|
|
template <typename T>
|
|
std::string PrintByRef(const T& value) {
|
|
::std::stringstream ss;
|
|
UniversalPrinter<T&>::Print(value, &ss);
|
|
return ss.str();
|
|
}
|
|
|
|
// Tests printing various enum types.
|
|
|
|
TEST(PrintEnumTest, AnonymousEnum) {
|
|
EXPECT_EQ("-1", Print(kAE1));
|
|
EXPECT_EQ("1", Print(kAE2));
|
|
}
|
|
|
|
TEST(PrintEnumTest, EnumWithoutPrinter) {
|
|
EXPECT_EQ("-2", Print(kEWP1));
|
|
EXPECT_EQ("42", Print(kEWP2));
|
|
}
|
|
|
|
TEST(PrintEnumTest, EnumWithStreaming) {
|
|
EXPECT_EQ("kEWS1", Print(kEWS1));
|
|
EXPECT_EQ("invalid", Print(static_cast<EnumWithStreaming>(0)));
|
|
}
|
|
|
|
TEST(PrintEnumTest, EnumWithPrintTo) {
|
|
EXPECT_EQ("kEWPT1", Print(kEWPT1));
|
|
EXPECT_EQ("invalid", Print(static_cast<EnumWithPrintTo>(0)));
|
|
}
|
|
|
|
// Tests printing a class implicitly convertible to BiggestInt.
|
|
|
|
TEST(PrintClassTest, BiggestIntConvertible) {
|
|
EXPECT_EQ("42", Print(BiggestIntConvertible()));
|
|
}
|
|
|
|
// Tests printing various char types.
|
|
|
|
// char.
|
|
TEST(PrintCharTest, PlainChar) {
|
|
EXPECT_EQ("'\\0'", Print('\0'));
|
|
EXPECT_EQ("'\\'' (39, 0x27)", Print('\''));
|
|
EXPECT_EQ("'\"' (34, 0x22)", Print('"'));
|
|
EXPECT_EQ("'?' (63, 0x3F)", Print('?'));
|
|
EXPECT_EQ("'\\\\' (92, 0x5C)", Print('\\'));
|
|
EXPECT_EQ("'\\a' (7)", Print('\a'));
|
|
EXPECT_EQ("'\\b' (8)", Print('\b'));
|
|
EXPECT_EQ("'\\f' (12, 0xC)", Print('\f'));
|
|
EXPECT_EQ("'\\n' (10, 0xA)", Print('\n'));
|
|
EXPECT_EQ("'\\r' (13, 0xD)", Print('\r'));
|
|
EXPECT_EQ("'\\t' (9)", Print('\t'));
|
|
EXPECT_EQ("'\\v' (11, 0xB)", Print('\v'));
|
|
EXPECT_EQ("'\\x7F' (127)", Print('\x7F'));
|
|
EXPECT_EQ("'\\xFF' (255)", Print('\xFF'));
|
|
EXPECT_EQ("' ' (32, 0x20)", Print(' '));
|
|
EXPECT_EQ("'a' (97, 0x61)", Print('a'));
|
|
}
|
|
|
|
// signed char.
|
|
TEST(PrintCharTest, SignedChar) {
|
|
EXPECT_EQ("'\\0'", Print(static_cast<signed char>('\0')));
|
|
EXPECT_EQ("'\\xCE' (-50)",
|
|
Print(static_cast<signed char>(-50)));
|
|
}
|
|
|
|
// unsigned char.
|
|
TEST(PrintCharTest, UnsignedChar) {
|
|
EXPECT_EQ("'\\0'", Print(static_cast<unsigned char>('\0')));
|
|
EXPECT_EQ("'b' (98, 0x62)",
|
|
Print(static_cast<unsigned char>('b')));
|
|
}
|
|
|
|
// Tests printing other simple, built-in types.
|
|
|
|
// bool.
|
|
TEST(PrintBuiltInTypeTest, Bool) {
|
|
EXPECT_EQ("false", Print(false));
|
|
EXPECT_EQ("true", Print(true));
|
|
}
|
|
|
|
// wchar_t.
|
|
TEST(PrintBuiltInTypeTest, Wchar_t) {
|
|
EXPECT_EQ("L'\\0'", Print(L'\0'));
|
|
EXPECT_EQ("L'\\'' (39, 0x27)", Print(L'\''));
|
|
EXPECT_EQ("L'\"' (34, 0x22)", Print(L'"'));
|
|
EXPECT_EQ("L'?' (63, 0x3F)", Print(L'?'));
|
|
EXPECT_EQ("L'\\\\' (92, 0x5C)", Print(L'\\'));
|
|
EXPECT_EQ("L'\\a' (7)", Print(L'\a'));
|
|
EXPECT_EQ("L'\\b' (8)", Print(L'\b'));
|
|
EXPECT_EQ("L'\\f' (12, 0xC)", Print(L'\f'));
|
|
EXPECT_EQ("L'\\n' (10, 0xA)", Print(L'\n'));
|
|
EXPECT_EQ("L'\\r' (13, 0xD)", Print(L'\r'));
|
|
EXPECT_EQ("L'\\t' (9)", Print(L'\t'));
|
|
EXPECT_EQ("L'\\v' (11, 0xB)", Print(L'\v'));
|
|
EXPECT_EQ("L'\\x7F' (127)", Print(L'\x7F'));
|
|
EXPECT_EQ("L'\\xFF' (255)", Print(L'\xFF'));
|
|
EXPECT_EQ("L' ' (32, 0x20)", Print(L' '));
|
|
EXPECT_EQ("L'a' (97, 0x61)", Print(L'a'));
|
|
EXPECT_EQ("L'\\x576' (1398)", Print(static_cast<wchar_t>(0x576)));
|
|
EXPECT_EQ("L'\\xC74D' (51021)", Print(static_cast<wchar_t>(0xC74D)));
|
|
}
|
|
|
|
// Test that Int64 provides more storage than wchar_t.
|
|
TEST(PrintTypeSizeTest, Wchar_t) {
|
|
EXPECT_LT(sizeof(wchar_t), sizeof(testing::internal::Int64));
|
|
}
|
|
|
|
// Various integer types.
|
|
TEST(PrintBuiltInTypeTest, Integer) {
|
|
EXPECT_EQ("'\\xFF' (255)", Print(static_cast<unsigned char>(255))); // uint8
|
|
EXPECT_EQ("'\\x80' (-128)", Print(static_cast<signed char>(-128))); // int8
|
|
EXPECT_EQ("65535", Print(USHRT_MAX)); // uint16
|
|
EXPECT_EQ("-32768", Print(SHRT_MIN)); // int16
|
|
EXPECT_EQ("4294967295", Print(UINT_MAX)); // uint32
|
|
EXPECT_EQ("-2147483648", Print(INT_MIN)); // int32
|
|
EXPECT_EQ("18446744073709551615",
|
|
Print(static_cast<testing::internal::UInt64>(-1))); // uint64
|
|
EXPECT_EQ("-9223372036854775808",
|
|
Print(static_cast<testing::internal::Int64>(1) << 63)); // int64
|
|
}
|
|
|
|
// Size types.
|
|
TEST(PrintBuiltInTypeTest, Size_t) {
|
|
EXPECT_EQ("1", Print(sizeof('a'))); // size_t.
|
|
#if !GTEST_OS_WINDOWS
|
|
// Windows has no ssize_t type.
|
|
EXPECT_EQ("-2", Print(static_cast<ssize_t>(-2))); // ssize_t.
|
|
#endif // !GTEST_OS_WINDOWS
|
|
}
|
|
|
|
// Floating-points.
|
|
TEST(PrintBuiltInTypeTest, FloatingPoints) {
|
|
EXPECT_EQ("1.5", Print(1.5f)); // float
|
|
EXPECT_EQ("-2.5", Print(-2.5)); // double
|
|
}
|
|
|
|
// Since ::std::stringstream::operator<<(const void *) formats the pointer
|
|
// output differently with different compilers, we have to create the expected
|
|
// output first and use it as our expectation.
|
|
static std::string PrintPointer(const void* p) {
|
|
::std::stringstream expected_result_stream;
|
|
expected_result_stream << p;
|
|
return expected_result_stream.str();
|
|
}
|
|
|
|
// Tests printing C strings.
|
|
|
|
// const char*.
|
|
TEST(PrintCStringTest, Const) {
|
|
const char* p = "World";
|
|
EXPECT_EQ(PrintPointer(p) + " pointing to \"World\"", Print(p));
|
|
}
|
|
|
|
// char*.
|
|
TEST(PrintCStringTest, NonConst) {
|
|
char p[] = "Hi";
|
|
EXPECT_EQ(PrintPointer(p) + " pointing to \"Hi\"",
|
|
Print(static_cast<char*>(p)));
|
|
}
|
|
|
|
// NULL C string.
|
|
TEST(PrintCStringTest, Null) {
|
|
const char* p = nullptr;
|
|
EXPECT_EQ("NULL", Print(p));
|
|
}
|
|
|
|
// Tests that C strings are escaped properly.
|
|
TEST(PrintCStringTest, EscapesProperly) {
|
|
const char* p = "'\"?\\\a\b\f\n\r\t\v\x7F\xFF a";
|
|
EXPECT_EQ(PrintPointer(p) + " pointing to \"'\\\"?\\\\\\a\\b\\f"
|
|
"\\n\\r\\t\\v\\x7F\\xFF a\"",
|
|
Print(p));
|
|
}
|
|
|
|
// MSVC compiler can be configured to define whar_t as a typedef
|
|
// of unsigned short. Defining an overload for const wchar_t* in that case
|
|
// would cause pointers to unsigned shorts be printed as wide strings,
|
|
// possibly accessing more memory than intended and causing invalid
|
|
// memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when
|
|
// wchar_t is implemented as a native type.
|
|
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
|
|
|
|
// const wchar_t*.
|
|
TEST(PrintWideCStringTest, Const) {
|
|
const wchar_t* p = L"World";
|
|
EXPECT_EQ(PrintPointer(p) + " pointing to L\"World\"", Print(p));
|
|
}
|
|
|
|
// wchar_t*.
|
|
TEST(PrintWideCStringTest, NonConst) {
|
|
wchar_t p[] = L"Hi";
|
|
EXPECT_EQ(PrintPointer(p) + " pointing to L\"Hi\"",
|
|
Print(static_cast<wchar_t*>(p)));
|
|
}
|
|
|
|
// NULL wide C string.
|
|
TEST(PrintWideCStringTest, Null) {
|
|
const wchar_t* p = nullptr;
|
|
EXPECT_EQ("NULL", Print(p));
|
|
}
|
|
|
|
// Tests that wide C strings are escaped properly.
|
|
TEST(PrintWideCStringTest, EscapesProperly) {
|
|
const wchar_t s[] = {'\'', '"', '?', '\\', '\a', '\b', '\f', '\n', '\r',
|
|
'\t', '\v', 0xD3, 0x576, 0x8D3, 0xC74D, ' ', 'a', '\0'};
|
|
EXPECT_EQ(PrintPointer(s) + " pointing to L\"'\\\"?\\\\\\a\\b\\f"
|
|
"\\n\\r\\t\\v\\xD3\\x576\\x8D3\\xC74D a\"",
|
|
Print(static_cast<const wchar_t*>(s)));
|
|
}
|
|
#endif // native wchar_t
|
|
|
|
// Tests printing pointers to other char types.
|
|
|
|
// signed char*.
|
|
TEST(PrintCharPointerTest, SignedChar) {
|
|
signed char* p = reinterpret_cast<signed char*>(0x1234);
|
|
EXPECT_EQ(PrintPointer(p), Print(p));
|
|
p = nullptr;
|
|
EXPECT_EQ("NULL", Print(p));
|
|
}
|
|
|
|
// const signed char*.
|
|
TEST(PrintCharPointerTest, ConstSignedChar) {
|
|
signed char* p = reinterpret_cast<signed char*>(0x1234);
|
|
EXPECT_EQ(PrintPointer(p), Print(p));
|
|
p = nullptr;
|
|
EXPECT_EQ("NULL", Print(p));
|
|
}
|
|
|
|
// unsigned char*.
|
|
TEST(PrintCharPointerTest, UnsignedChar) {
|
|
unsigned char* p = reinterpret_cast<unsigned char*>(0x1234);
|
|
EXPECT_EQ(PrintPointer(p), Print(p));
|
|
p = nullptr;
|
|
EXPECT_EQ("NULL", Print(p));
|
|
}
|
|
|
|
// const unsigned char*.
|
|
TEST(PrintCharPointerTest, ConstUnsignedChar) {
|
|
const unsigned char* p = reinterpret_cast<const unsigned char*>(0x1234);
|
|
EXPECT_EQ(PrintPointer(p), Print(p));
|
|
p = nullptr;
|
|
EXPECT_EQ("NULL", Print(p));
|
|
}
|
|
|
|
// Tests printing pointers to simple, built-in types.
|
|
|
|
// bool*.
|
|
TEST(PrintPointerToBuiltInTypeTest, Bool) {
|
|
bool* p = reinterpret_cast<bool*>(0xABCD);
|
|
EXPECT_EQ(PrintPointer(p), Print(p));
|
|
p = nullptr;
|
|
EXPECT_EQ("NULL", Print(p));
|
|
}
|
|
|
|
// void*.
|
|
TEST(PrintPointerToBuiltInTypeTest, Void) {
|
|
void* p = reinterpret_cast<void*>(0xABCD);
|
|
EXPECT_EQ(PrintPointer(p), Print(p));
|
|
p = nullptr;
|
|
EXPECT_EQ("NULL", Print(p));
|
|
}
|
|
|
|
// const void*.
|
|
TEST(PrintPointerToBuiltInTypeTest, ConstVoid) {
|
|
const void* p = reinterpret_cast<const void*>(0xABCD);
|
|
EXPECT_EQ(PrintPointer(p), Print(p));
|
|
p = nullptr;
|
|
EXPECT_EQ("NULL", Print(p));
|
|
}
|
|
|
|
// Tests printing pointers to pointers.
|
|
TEST(PrintPointerToPointerTest, IntPointerPointer) {
|
|
int** p = reinterpret_cast<int**>(0xABCD);
|
|
EXPECT_EQ(PrintPointer(p), Print(p));
|
|
p = nullptr;
|
|
EXPECT_EQ("NULL", Print(p));
|
|
}
|
|
|
|
// Tests printing (non-member) function pointers.
|
|
|
|
void MyFunction(int /* n */) {}
|
|
|
|
TEST(PrintPointerTest, NonMemberFunctionPointer) {
|
|
// We cannot directly cast &MyFunction to const void* because the
|
|
// standard disallows casting between pointers to functions and
|
|
// pointers to objects, and some compilers (e.g. GCC 3.4) enforce
|
|
// this limitation.
|
|
EXPECT_EQ(
|
|
PrintPointer(reinterpret_cast<const void*>(
|
|
reinterpret_cast<internal::BiggestInt>(&MyFunction))),
|
|
Print(&MyFunction));
|
|
int (*p)(bool) = NULL; // NOLINT
|
|
EXPECT_EQ("NULL", Print(p));
|
|
}
|
|
|
|
// An assertion predicate determining whether a one string is a prefix for
|
|
// another.
|
|
template <typename StringType>
|
|
AssertionResult HasPrefix(const StringType& str, const StringType& prefix) {
|
|
if (str.find(prefix, 0) == 0)
|
|
return AssertionSuccess();
|
|
|
|
const bool is_wide_string = sizeof(prefix[0]) > 1;
|
|
const char* const begin_string_quote = is_wide_string ? "L\"" : "\"";
|
|
return AssertionFailure()
|
|
<< begin_string_quote << prefix << "\" is not a prefix of "
|
|
<< begin_string_quote << str << "\"\n";
|
|
}
|
|
|
|
// Tests printing member variable pointers. Although they are called
|
|
// pointers, they don't point to a location in the address space.
|
|
// Their representation is implementation-defined. Thus they will be
|
|
// printed as raw bytes.
|
|
|
|
struct Foo {
|
|
public:
|
|
virtual ~Foo() {}
|
|
int MyMethod(char x) { return x + 1; }
|
|
virtual char MyVirtualMethod(int /* n */) { return 'a'; }
|
|
|
|
int value;
|
|
};
|
|
|
|
TEST(PrintPointerTest, MemberVariablePointer) {
|
|
EXPECT_TRUE(HasPrefix(Print(&Foo::value),
|
|
Print(sizeof(&Foo::value)) + "-byte object "));
|
|
int Foo::*p = NULL; // NOLINT
|
|
EXPECT_TRUE(HasPrefix(Print(p),
|
|
Print(sizeof(p)) + "-byte object "));
|
|
}
|
|
|
|
// Tests printing member function pointers. Although they are called
|
|
// pointers, they don't point to a location in the address space.
|
|
// Their representation is implementation-defined. Thus they will be
|
|
// printed as raw bytes.
|
|
TEST(PrintPointerTest, MemberFunctionPointer) {
|
|
EXPECT_TRUE(HasPrefix(Print(&Foo::MyMethod),
|
|
Print(sizeof(&Foo::MyMethod)) + "-byte object "));
|
|
EXPECT_TRUE(
|
|
HasPrefix(Print(&Foo::MyVirtualMethod),
|
|
Print(sizeof((&Foo::MyVirtualMethod))) + "-byte object "));
|
|
int (Foo::*p)(char) = NULL; // NOLINT
|
|
EXPECT_TRUE(HasPrefix(Print(p),
|
|
Print(sizeof(p)) + "-byte object "));
|
|
}
|
|
|
|
// Tests printing C arrays.
|
|
|
|
// The difference between this and Print() is that it ensures that the
|
|
// argument is a reference to an array.
|
|
template <typename T, size_t N>
|
|
std::string PrintArrayHelper(T (&a)[N]) {
|
|
return Print(a);
|
|
}
|
|
|
|
// One-dimensional array.
|
|
TEST(PrintArrayTest, OneDimensionalArray) {
|
|
int a[5] = { 1, 2, 3, 4, 5 };
|
|
EXPECT_EQ("{ 1, 2, 3, 4, 5 }", PrintArrayHelper(a));
|
|
}
|
|
|
|
// Two-dimensional array.
|
|
TEST(PrintArrayTest, TwoDimensionalArray) {
|
|
int a[2][5] = {
|
|
{ 1, 2, 3, 4, 5 },
|
|
{ 6, 7, 8, 9, 0 }
|
|
};
|
|
EXPECT_EQ("{ { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 0 } }", PrintArrayHelper(a));
|
|
}
|
|
|
|
// Array of const elements.
|
|
TEST(PrintArrayTest, ConstArray) {
|
|
const bool a[1] = { false };
|
|
EXPECT_EQ("{ false }", PrintArrayHelper(a));
|
|
}
|
|
|
|
// char array without terminating NUL.
|
|
TEST(PrintArrayTest, CharArrayWithNoTerminatingNul) {
|
|
// Array a contains '\0' in the middle and doesn't end with '\0'.
|
|
char a[] = { 'H', '\0', 'i' };
|
|
EXPECT_EQ("\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
|
|
}
|
|
|
|
// const char array with terminating NUL.
|
|
TEST(PrintArrayTest, ConstCharArrayWithTerminatingNul) {
|
|
const char a[] = "\0Hi";
|
|
EXPECT_EQ("\"\\0Hi\"", PrintArrayHelper(a));
|
|
}
|
|
|
|
// const wchar_t array without terminating NUL.
|
|
TEST(PrintArrayTest, WCharArrayWithNoTerminatingNul) {
|
|
// Array a contains '\0' in the middle and doesn't end with '\0'.
|
|
const wchar_t a[] = { L'H', L'\0', L'i' };
|
|
EXPECT_EQ("L\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
|
|
}
|
|
|
|
// wchar_t array with terminating NUL.
|
|
TEST(PrintArrayTest, WConstCharArrayWithTerminatingNul) {
|
|
const wchar_t a[] = L"\0Hi";
|
|
EXPECT_EQ("L\"\\0Hi\"", PrintArrayHelper(a));
|
|
}
|
|
|
|
// Array of objects.
|
|
TEST(PrintArrayTest, ObjectArray) {
|
|
std::string a[3] = {"Hi", "Hello", "Ni hao"};
|
|
EXPECT_EQ("{ \"Hi\", \"Hello\", \"Ni hao\" }", PrintArrayHelper(a));
|
|
}
|
|
|
|
// Array with many elements.
|
|
TEST(PrintArrayTest, BigArray) {
|
|
int a[100] = { 1, 2, 3 };
|
|
EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, ..., 0, 0, 0, 0, 0, 0, 0, 0 }",
|
|
PrintArrayHelper(a));
|
|
}
|
|
|
|
// Tests printing ::string and ::std::string.
|
|
|
|
// ::std::string.
|
|
TEST(PrintStringTest, StringInStdNamespace) {
|
|
const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a";
|
|
const ::std::string str(s, sizeof(s));
|
|
EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"",
|
|
Print(str));
|
|
}
|
|
|
|
TEST(PrintStringTest, StringAmbiguousHex) {
|
|
// "\x6BANANA" is ambiguous, it can be interpreted as starting with either of:
|
|
// '\x6', '\x6B', or '\x6BA'.
|
|
|
|
// a hex escaping sequence following by a decimal digit
|
|
EXPECT_EQ("\"0\\x12\" \"3\"", Print(::std::string("0\x12" "3")));
|
|
// a hex escaping sequence following by a hex digit (lower-case)
|
|
EXPECT_EQ("\"mm\\x6\" \"bananas\"", Print(::std::string("mm\x6" "bananas")));
|
|
// a hex escaping sequence following by a hex digit (upper-case)
|
|
EXPECT_EQ("\"NOM\\x6\" \"BANANA\"", Print(::std::string("NOM\x6" "BANANA")));
|
|
// a hex escaping sequence following by a non-xdigit
|
|
EXPECT_EQ("\"!\\x5-!\"", Print(::std::string("!\x5-!")));
|
|
}
|
|
|
|
// Tests printing ::std::wstring.
|
|
#if GTEST_HAS_STD_WSTRING
|
|
// ::std::wstring.
|
|
TEST(PrintWideStringTest, StringInStdNamespace) {
|
|
const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a";
|
|
const ::std::wstring str(s, sizeof(s)/sizeof(wchar_t));
|
|
EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v"
|
|
"\\xD3\\x576\\x8D3\\xC74D a\\0\"",
|
|
Print(str));
|
|
}
|
|
|
|
TEST(PrintWideStringTest, StringAmbiguousHex) {
|
|
// same for wide strings.
|
|
EXPECT_EQ("L\"0\\x12\" L\"3\"", Print(::std::wstring(L"0\x12" L"3")));
|
|
EXPECT_EQ("L\"mm\\x6\" L\"bananas\"",
|
|
Print(::std::wstring(L"mm\x6" L"bananas")));
|
|
EXPECT_EQ("L\"NOM\\x6\" L\"BANANA\"",
|
|
Print(::std::wstring(L"NOM\x6" L"BANANA")));
|
|
EXPECT_EQ("L\"!\\x5-!\"", Print(::std::wstring(L"!\x5-!")));
|
|
}
|
|
#endif // GTEST_HAS_STD_WSTRING
|
|
|
|
// Tests printing types that support generic streaming (i.e. streaming
|
|
// to std::basic_ostream<Char, CharTraits> for any valid Char and
|
|
// CharTraits types).
|
|
|
|
// Tests printing a non-template type that supports generic streaming.
|
|
|
|
class AllowsGenericStreaming {};
|
|
|
|
template <typename Char, typename CharTraits>
|
|
std::basic_ostream<Char, CharTraits>& operator<<(
|
|
std::basic_ostream<Char, CharTraits>& os,
|
|
const AllowsGenericStreaming& /* a */) {
|
|
return os << "AllowsGenericStreaming";
|
|
}
|
|
|
|
TEST(PrintTypeWithGenericStreamingTest, NonTemplateType) {
|
|
AllowsGenericStreaming a;
|
|
EXPECT_EQ("AllowsGenericStreaming", Print(a));
|
|
}
|
|
|
|
// Tests printing a template type that supports generic streaming.
|
|
|
|
template <typename T>
|
|
class AllowsGenericStreamingTemplate {};
|
|
|
|
template <typename Char, typename CharTraits, typename T>
|
|
std::basic_ostream<Char, CharTraits>& operator<<(
|
|
std::basic_ostream<Char, CharTraits>& os,
|
|
const AllowsGenericStreamingTemplate<T>& /* a */) {
|
|
return os << "AllowsGenericStreamingTemplate";
|
|
}
|
|
|
|
TEST(PrintTypeWithGenericStreamingTest, TemplateType) {
|
|
AllowsGenericStreamingTemplate<int> a;
|
|
EXPECT_EQ("AllowsGenericStreamingTemplate", Print(a));
|
|
}
|
|
|
|
// Tests printing a type that supports generic streaming and can be
|
|
// implicitly converted to another printable type.
|
|
|
|
template <typename T>
|
|
class AllowsGenericStreamingAndImplicitConversionTemplate {
|
|
public:
|
|
operator bool() const { return false; }
|
|
};
|
|
|
|
template <typename Char, typename CharTraits, typename T>
|
|
std::basic_ostream<Char, CharTraits>& operator<<(
|
|
std::basic_ostream<Char, CharTraits>& os,
|
|
const AllowsGenericStreamingAndImplicitConversionTemplate<T>& /* a */) {
|
|
return os << "AllowsGenericStreamingAndImplicitConversionTemplate";
|
|
}
|
|
|
|
TEST(PrintTypeWithGenericStreamingTest, TypeImplicitlyConvertible) {
|
|
AllowsGenericStreamingAndImplicitConversionTemplate<int> a;
|
|
EXPECT_EQ("AllowsGenericStreamingAndImplicitConversionTemplate", Print(a));
|
|
}
|
|
|
|
#if GTEST_HAS_ABSL
|
|
|
|
// Tests printing ::absl::string_view.
|
|
|
|
TEST(PrintStringViewTest, SimpleStringView) {
|
|
const ::absl::string_view sp = "Hello";
|
|
EXPECT_EQ("\"Hello\"", Print(sp));
|
|
}
|
|
|
|
TEST(PrintStringViewTest, UnprintableCharacters) {
|
|
const char str[] = "NUL (\0) and \r\t";
|
|
const ::absl::string_view sp(str, sizeof(str) - 1);
|
|
EXPECT_EQ("\"NUL (\\0) and \\r\\t\"", Print(sp));
|
|
}
|
|
|
|
#endif // GTEST_HAS_ABSL
|
|
|
|
// Tests printing STL containers.
|
|
|
|
TEST(PrintStlContainerTest, EmptyDeque) {
|
|
deque<char> empty;
|
|
EXPECT_EQ("{}", Print(empty));
|
|
}
|
|
|
|
TEST(PrintStlContainerTest, NonEmptyDeque) {
|
|
deque<int> non_empty;
|
|
non_empty.push_back(1);
|
|
non_empty.push_back(3);
|
|
EXPECT_EQ("{ 1, 3 }", Print(non_empty));
|
|
}
|
|
|
|
|
|
TEST(PrintStlContainerTest, OneElementHashMap) {
|
|
::std::unordered_map<int, char> map1;
|
|
map1[1] = 'a';
|
|
EXPECT_EQ("{ (1, 'a' (97, 0x61)) }", Print(map1));
|
|
}
|
|
|
|
TEST(PrintStlContainerTest, HashMultiMap) {
|
|
::std::unordered_multimap<int, bool> map1;
|
|
map1.insert(make_pair(5, true));
|
|
map1.insert(make_pair(5, false));
|
|
|
|
// Elements of hash_multimap can be printed in any order.
|
|
const std::string result = Print(map1);
|
|
EXPECT_TRUE(result == "{ (5, true), (5, false) }" ||
|
|
result == "{ (5, false), (5, true) }")
|
|
<< " where Print(map1) returns \"" << result << "\".";
|
|
}
|
|
|
|
|
|
|
|
TEST(PrintStlContainerTest, HashSet) {
|
|
::std::unordered_set<int> set1;
|
|
set1.insert(1);
|
|
EXPECT_EQ("{ 1 }", Print(set1));
|
|
}
|
|
|
|
TEST(PrintStlContainerTest, HashMultiSet) {
|
|
const int kSize = 5;
|
|
int a[kSize] = { 1, 1, 2, 5, 1 };
|
|
::std::unordered_multiset<int> set1(a, a + kSize);
|
|
|
|
// Elements of hash_multiset can be printed in any order.
|
|
const std::string result = Print(set1);
|
|
const std::string expected_pattern = "{ d, d, d, d, d }"; // d means a digit.
|
|
|
|
// Verifies the result matches the expected pattern; also extracts
|
|
// the numbers in the result.
|
|
ASSERT_EQ(expected_pattern.length(), result.length());
|
|
std::vector<int> numbers;
|
|
for (size_t i = 0; i != result.length(); i++) {
|
|
if (expected_pattern[i] == 'd') {
|
|
ASSERT_NE(isdigit(static_cast<unsigned char>(result[i])), 0);
|
|
numbers.push_back(result[i] - '0');
|
|
} else {
|
|
EXPECT_EQ(expected_pattern[i], result[i]) << " where result is "
|
|
<< result;
|
|
}
|
|
}
|
|
|
|
// Makes sure the result contains the right numbers.
|
|
std::sort(numbers.begin(), numbers.end());
|
|
std::sort(a, a + kSize);
|
|
EXPECT_TRUE(std::equal(a, a + kSize, numbers.begin()));
|
|
}
|
|
|
|
|
|
TEST(PrintStlContainerTest, List) {
|
|
const std::string a[] = {"hello", "world"};
|
|
const list<std::string> strings(a, a + 2);
|
|
EXPECT_EQ("{ \"hello\", \"world\" }", Print(strings));
|
|
}
|
|
|
|
TEST(PrintStlContainerTest, Map) {
|
|
map<int, bool> map1;
|
|
map1[1] = true;
|
|
map1[5] = false;
|
|
map1[3] = true;
|
|
EXPECT_EQ("{ (1, true), (3, true), (5, false) }", Print(map1));
|
|
}
|
|
|
|
TEST(PrintStlContainerTest, MultiMap) {
|
|
multimap<bool, int> map1;
|
|
// The make_pair template function would deduce the type as
|
|
// pair<bool, int> here, and since the key part in a multimap has to
|
|
// be constant, without a templated ctor in the pair class (as in
|
|
// libCstd on Solaris), make_pair call would fail to compile as no
|
|
// implicit conversion is found. Thus explicit typename is used
|
|
// here instead.
|
|
map1.insert(pair<const bool, int>(true, 0));
|
|
map1.insert(pair<const bool, int>(true, 1));
|
|
map1.insert(pair<const bool, int>(false, 2));
|
|
EXPECT_EQ("{ (false, 2), (true, 0), (true, 1) }", Print(map1));
|
|
}
|
|
|
|
TEST(PrintStlContainerTest, Set) {
|
|
const unsigned int a[] = { 3, 0, 5 };
|
|
set<unsigned int> set1(a, a + 3);
|
|
EXPECT_EQ("{ 0, 3, 5 }", Print(set1));
|
|
}
|
|
|
|
TEST(PrintStlContainerTest, MultiSet) {
|
|
const int a[] = { 1, 1, 2, 5, 1 };
|
|
multiset<int> set1(a, a + 5);
|
|
EXPECT_EQ("{ 1, 1, 1, 2, 5 }", Print(set1));
|
|
}
|
|
|
|
|
|
TEST(PrintStlContainerTest, SinglyLinkedList) {
|
|
int a[] = { 9, 2, 8 };
|
|
const std::forward_list<int> ints(a, a + 3);
|
|
EXPECT_EQ("{ 9, 2, 8 }", Print(ints));
|
|
}
|
|
|
|
TEST(PrintStlContainerTest, Pair) {
|
|
pair<const bool, int> p(true, 5);
|
|
EXPECT_EQ("(true, 5)", Print(p));
|
|
}
|
|
|
|
TEST(PrintStlContainerTest, Vector) {
|
|
vector<int> v;
|
|
v.push_back(1);
|
|
v.push_back(2);
|
|
EXPECT_EQ("{ 1, 2 }", Print(v));
|
|
}
|
|
|
|
TEST(PrintStlContainerTest, LongSequence) {
|
|
const int a[100] = { 1, 2, 3 };
|
|
const vector<int> v(a, a + 100);
|
|
EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "
|
|
"0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... }", Print(v));
|
|
}
|
|
|
|
TEST(PrintStlContainerTest, NestedContainer) {
|
|
const int a1[] = { 1, 2 };
|
|
const int a2[] = { 3, 4, 5 };
|
|
const list<int> l1(a1, a1 + 2);
|
|
const list<int> l2(a2, a2 + 3);
|
|
|
|
vector<list<int> > v;
|
|
v.push_back(l1);
|
|
v.push_back(l2);
|
|
EXPECT_EQ("{ { 1, 2 }, { 3, 4, 5 } }", Print(v));
|
|
}
|
|
|
|
TEST(PrintStlContainerTest, OneDimensionalNativeArray) {
|
|
const int a[3] = { 1, 2, 3 };
|
|
NativeArray<int> b(a, 3, RelationToSourceReference());
|
|
EXPECT_EQ("{ 1, 2, 3 }", Print(b));
|
|
}
|
|
|
|
TEST(PrintStlContainerTest, TwoDimensionalNativeArray) {
|
|
const int a[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } };
|
|
NativeArray<int[3]> b(a, 2, RelationToSourceReference());
|
|
EXPECT_EQ("{ { 1, 2, 3 }, { 4, 5, 6 } }", Print(b));
|
|
}
|
|
|
|
// Tests that a class named iterator isn't treated as a container.
|
|
|
|
struct iterator {
|
|
char x;
|
|
};
|
|
|
|
TEST(PrintStlContainerTest, Iterator) {
|
|
iterator it = {};
|
|
EXPECT_EQ("1-byte object <00>", Print(it));
|
|
}
|
|
|
|
// Tests that a class named const_iterator isn't treated as a container.
|
|
|
|
struct const_iterator {
|
|
char x;
|
|
};
|
|
|
|
TEST(PrintStlContainerTest, ConstIterator) {
|
|
const_iterator it = {};
|
|
EXPECT_EQ("1-byte object <00>", Print(it));
|
|
}
|
|
|
|
// Tests printing ::std::tuples.
|
|
|
|
// Tuples of various arities.
|
|
TEST(PrintStdTupleTest, VariousSizes) {
|
|
::std::tuple<> t0;
|
|
EXPECT_EQ("()", Print(t0));
|
|
|
|
::std::tuple<int> t1(5);
|
|
EXPECT_EQ("(5)", Print(t1));
|
|
|
|
::std::tuple<char, bool> t2('a', true);
|
|
EXPECT_EQ("('a' (97, 0x61), true)", Print(t2));
|
|
|
|
::std::tuple<bool, int, int> t3(false, 2, 3);
|
|
EXPECT_EQ("(false, 2, 3)", Print(t3));
|
|
|
|
::std::tuple<bool, int, int, int> t4(false, 2, 3, 4);
|
|
EXPECT_EQ("(false, 2, 3, 4)", Print(t4));
|
|
|
|
const char* const str = "8";
|
|
::std::tuple<bool, char, short, testing::internal::Int32, // NOLINT
|
|
testing::internal::Int64, float, double, const char*, void*,
|
|
std::string>
|
|
t10(false, 'a', static_cast<short>(3), 4, 5, 1.5F, -2.5, str, // NOLINT
|
|
nullptr, "10");
|
|
EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) +
|
|
" pointing to \"8\", NULL, \"10\")",
|
|
Print(t10));
|
|
}
|
|
|
|
// Nested tuples.
|
|
TEST(PrintStdTupleTest, NestedTuple) {
|
|
::std::tuple< ::std::tuple<int, bool>, char> nested(
|
|
::std::make_tuple(5, true), 'a');
|
|
EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested));
|
|
}
|
|
|
|
TEST(PrintNullptrT, Basic) {
|
|
EXPECT_EQ("(nullptr)", Print(nullptr));
|
|
}
|
|
|
|
TEST(PrintReferenceWrapper, Printable) {
|
|
int x = 5;
|
|
EXPECT_EQ("@" + PrintPointer(&x) + " 5", Print(std::ref(x)));
|
|
EXPECT_EQ("@" + PrintPointer(&x) + " 5", Print(std::cref(x)));
|
|
}
|
|
|
|
TEST(PrintReferenceWrapper, Unprintable) {
|
|
::foo::UnprintableInFoo up;
|
|
EXPECT_EQ(
|
|
"@" + PrintPointer(&up) +
|
|
" 16-byte object <EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
|
|
Print(std::ref(up)));
|
|
EXPECT_EQ(
|
|
"@" + PrintPointer(&up) +
|
|
" 16-byte object <EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
|
|
Print(std::cref(up)));
|
|
}
|
|
|
|
// Tests printing user-defined unprintable types.
|
|
|
|
// Unprintable types in the global namespace.
|
|
TEST(PrintUnprintableTypeTest, InGlobalNamespace) {
|
|
EXPECT_EQ("1-byte object <00>",
|
|
Print(UnprintableTemplateInGlobal<char>()));
|
|
}
|
|
|
|
// Unprintable types in a user namespace.
|
|
TEST(PrintUnprintableTypeTest, InUserNamespace) {
|
|
EXPECT_EQ("16-byte object <EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
|
|
Print(::foo::UnprintableInFoo()));
|
|
}
|
|
|
|
// Unprintable types are that too big to be printed completely.
|
|
|
|
struct Big {
|
|
Big() { memset(array, 0, sizeof(array)); }
|
|
char array[257];
|
|
};
|
|
|
|
TEST(PrintUnpritableTypeTest, BigObject) {
|
|
EXPECT_EQ("257-byte object <00-00 00-00 00-00 00-00 00-00 00-00 "
|
|
"00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
|
|
"00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
|
|
"00-00 00-00 00-00 00-00 00-00 00-00 ... 00-00 00-00 00-00 "
|
|
"00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
|
|
"00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
|
|
"00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00>",
|
|
Print(Big()));
|
|
}
|
|
|
|
// Tests printing user-defined streamable types.
|
|
|
|
// Streamable types in the global namespace.
|
|
TEST(PrintStreamableTypeTest, InGlobalNamespace) {
|
|
StreamableInGlobal x;
|
|
EXPECT_EQ("StreamableInGlobal", Print(x));
|
|
EXPECT_EQ("StreamableInGlobal*", Print(&x));
|
|
}
|
|
|
|
// Printable template types in a user namespace.
|
|
TEST(PrintStreamableTypeTest, TemplateTypeInUserNamespace) {
|
|
EXPECT_EQ("StreamableTemplateInFoo: 0",
|
|
Print(::foo::StreamableTemplateInFoo<int>()));
|
|
}
|
|
|
|
// Tests printing a user-defined recursive container type that has a <<
|
|
// operator.
|
|
TEST(PrintStreamableTypeTest, PathLikeInUserNamespace) {
|
|
::foo::PathLike x;
|
|
EXPECT_EQ("Streamable-PathLike", Print(x));
|
|
const ::foo::PathLike cx;
|
|
EXPECT_EQ("Streamable-PathLike", Print(cx));
|
|
}
|
|
|
|
// Tests printing user-defined types that have a PrintTo() function.
|
|
TEST(PrintPrintableTypeTest, InUserNamespace) {
|
|
EXPECT_EQ("PrintableViaPrintTo: 0",
|
|
Print(::foo::PrintableViaPrintTo()));
|
|
}
|
|
|
|
// Tests printing a pointer to a user-defined type that has a <<
|
|
// operator for its pointer.
|
|
TEST(PrintPrintableTypeTest, PointerInUserNamespace) {
|
|
::foo::PointerPrintable x;
|
|
EXPECT_EQ("PointerPrintable*", Print(&x));
|
|
}
|
|
|
|
// Tests printing user-defined class template that have a PrintTo() function.
|
|
TEST(PrintPrintableTypeTest, TemplateInUserNamespace) {
|
|
EXPECT_EQ("PrintableViaPrintToTemplate: 5",
|
|
Print(::foo::PrintableViaPrintToTemplate<int>(5)));
|
|
}
|
|
|
|
// Tests that the universal printer prints both the address and the
|
|
// value of a reference.
|
|
TEST(PrintReferenceTest, PrintsAddressAndValue) {
|
|
int n = 5;
|
|
EXPECT_EQ("@" + PrintPointer(&n) + " 5", PrintByRef(n));
|
|
|
|
int a[2][3] = {
|
|
{ 0, 1, 2 },
|
|
{ 3, 4, 5 }
|
|
};
|
|
EXPECT_EQ("@" + PrintPointer(a) + " { { 0, 1, 2 }, { 3, 4, 5 } }",
|
|
PrintByRef(a));
|
|
|
|
const ::foo::UnprintableInFoo x;
|
|
EXPECT_EQ("@" + PrintPointer(&x) + " 16-byte object "
|
|
"<EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
|
|
PrintByRef(x));
|
|
}
|
|
|
|
// Tests that the universal printer prints a function pointer passed by
|
|
// reference.
|
|
TEST(PrintReferenceTest, HandlesFunctionPointer) {
|
|
void (*fp)(int n) = &MyFunction;
|
|
const std::string fp_pointer_string =
|
|
PrintPointer(reinterpret_cast<const void*>(&fp));
|
|
// We cannot directly cast &MyFunction to const void* because the
|
|
// standard disallows casting between pointers to functions and
|
|
// pointers to objects, and some compilers (e.g. GCC 3.4) enforce
|
|
// this limitation.
|
|
const std::string fp_string = PrintPointer(reinterpret_cast<const void*>(
|
|
reinterpret_cast<internal::BiggestInt>(fp)));
|
|
EXPECT_EQ("@" + fp_pointer_string + " " + fp_string,
|
|
PrintByRef(fp));
|
|
}
|
|
|
|
// Tests that the universal printer prints a member function pointer
|
|
// passed by reference.
|
|
TEST(PrintReferenceTest, HandlesMemberFunctionPointer) {
|
|
int (Foo::*p)(char ch) = &Foo::MyMethod;
|
|
EXPECT_TRUE(HasPrefix(
|
|
PrintByRef(p),
|
|
"@" + PrintPointer(reinterpret_cast<const void*>(&p)) + " " +
|
|
Print(sizeof(p)) + "-byte object "));
|
|
|
|
char (Foo::*p2)(int n) = &Foo::MyVirtualMethod;
|
|
EXPECT_TRUE(HasPrefix(
|
|
PrintByRef(p2),
|
|
"@" + PrintPointer(reinterpret_cast<const void*>(&p2)) + " " +
|
|
Print(sizeof(p2)) + "-byte object "));
|
|
}
|
|
|
|
// Tests that the universal printer prints a member variable pointer
|
|
// passed by reference.
|
|
TEST(PrintReferenceTest, HandlesMemberVariablePointer) {
|
|
int Foo::*p = &Foo::value; // NOLINT
|
|
EXPECT_TRUE(HasPrefix(
|
|
PrintByRef(p),
|
|
"@" + PrintPointer(&p) + " " + Print(sizeof(p)) + "-byte object "));
|
|
}
|
|
|
|
// Tests that FormatForComparisonFailureMessage(), which is used to print
|
|
// an operand in a comparison assertion (e.g. ASSERT_EQ) when the assertion
|
|
// fails, formats the operand in the desired way.
|
|
|
|
// scalar
|
|
TEST(FormatForComparisonFailureMessageTest, WorksForScalar) {
|
|
EXPECT_STREQ("123",
|
|
FormatForComparisonFailureMessage(123, 124).c_str());
|
|
}
|
|
|
|
// non-char pointer
|
|
TEST(FormatForComparisonFailureMessageTest, WorksForNonCharPointer) {
|
|
int n = 0;
|
|
EXPECT_EQ(PrintPointer(&n),
|
|
FormatForComparisonFailureMessage(&n, &n).c_str());
|
|
}
|
|
|
|
// non-char array
|
|
TEST(FormatForComparisonFailureMessageTest, FormatsNonCharArrayAsPointer) {
|
|
// In expression 'array == x', 'array' is compared by pointer.
|
|
// Therefore we want to print an array operand as a pointer.
|
|
int n[] = { 1, 2, 3 };
|
|
EXPECT_EQ(PrintPointer(n),
|
|
FormatForComparisonFailureMessage(n, n).c_str());
|
|
}
|
|
|
|
// Tests formatting a char pointer when it's compared with another pointer.
|
|
// In this case we want to print it as a raw pointer, as the comparison is by
|
|
// pointer.
|
|
|
|
// char pointer vs pointer
|
|
TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsPointer) {
|
|
// In expression 'p == x', where 'p' and 'x' are (const or not) char
|
|
// pointers, the operands are compared by pointer. Therefore we
|
|
// want to print 'p' as a pointer instead of a C string (we don't
|
|
// even know if it's supposed to point to a valid C string).
|
|
|
|
// const char*
|
|
const char* s = "hello";
|
|
EXPECT_EQ(PrintPointer(s),
|
|
FormatForComparisonFailureMessage(s, s).c_str());
|
|
|
|
// char*
|
|
char ch = 'a';
|
|
EXPECT_EQ(PrintPointer(&ch),
|
|
FormatForComparisonFailureMessage(&ch, &ch).c_str());
|
|
}
|
|
|
|
// wchar_t pointer vs pointer
|
|
TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsPointer) {
|
|
// In expression 'p == x', where 'p' and 'x' are (const or not) char
|
|
// pointers, the operands are compared by pointer. Therefore we
|
|
// want to print 'p' as a pointer instead of a wide C string (we don't
|
|
// even know if it's supposed to point to a valid wide C string).
|
|
|
|
// const wchar_t*
|
|
const wchar_t* s = L"hello";
|
|
EXPECT_EQ(PrintPointer(s),
|
|
FormatForComparisonFailureMessage(s, s).c_str());
|
|
|
|
// wchar_t*
|
|
wchar_t ch = L'a';
|
|
EXPECT_EQ(PrintPointer(&ch),
|
|
FormatForComparisonFailureMessage(&ch, &ch).c_str());
|
|
}
|
|
|
|
// Tests formatting a char pointer when it's compared to a string object.
|
|
// In this case we want to print the char pointer as a C string.
|
|
|
|
// char pointer vs std::string
|
|
TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsStdString) {
|
|
const char* s = "hello \"world";
|
|
EXPECT_STREQ("\"hello \\\"world\"", // The string content should be escaped.
|
|
FormatForComparisonFailureMessage(s, ::std::string()).c_str());
|
|
|
|
// char*
|
|
char str[] = "hi\1";
|
|
char* p = str;
|
|
EXPECT_STREQ("\"hi\\x1\"", // The string content should be escaped.
|
|
FormatForComparisonFailureMessage(p, ::std::string()).c_str());
|
|
}
|
|
|
|
#if GTEST_HAS_STD_WSTRING
|
|
// wchar_t pointer vs std::wstring
|
|
TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsStdWString) {
|
|
const wchar_t* s = L"hi \"world";
|
|
EXPECT_STREQ("L\"hi \\\"world\"", // The string content should be escaped.
|
|
FormatForComparisonFailureMessage(s, ::std::wstring()).c_str());
|
|
|
|
// wchar_t*
|
|
wchar_t str[] = L"hi\1";
|
|
wchar_t* p = str;
|
|
EXPECT_STREQ("L\"hi\\x1\"", // The string content should be escaped.
|
|
FormatForComparisonFailureMessage(p, ::std::wstring()).c_str());
|
|
}
|
|
#endif
|
|
|
|
// Tests formatting a char array when it's compared with a pointer or array.
|
|
// In this case we want to print the array as a row pointer, as the comparison
|
|
// is by pointer.
|
|
|
|
// char array vs pointer
|
|
TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsPointer) {
|
|
char str[] = "hi \"world\"";
|
|
char* p = nullptr;
|
|
EXPECT_EQ(PrintPointer(str),
|
|
FormatForComparisonFailureMessage(str, p).c_str());
|
|
}
|
|
|
|
// char array vs char array
|
|
TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsCharArray) {
|
|
const char str[] = "hi \"world\"";
|
|
EXPECT_EQ(PrintPointer(str),
|
|
FormatForComparisonFailureMessage(str, str).c_str());
|
|
}
|
|
|
|
// wchar_t array vs pointer
|
|
TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsPointer) {
|
|
wchar_t str[] = L"hi \"world\"";
|
|
wchar_t* p = nullptr;
|
|
EXPECT_EQ(PrintPointer(str),
|
|
FormatForComparisonFailureMessage(str, p).c_str());
|
|
}
|
|
|
|
// wchar_t array vs wchar_t array
|
|
TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWCharArray) {
|
|
const wchar_t str[] = L"hi \"world\"";
|
|
EXPECT_EQ(PrintPointer(str),
|
|
FormatForComparisonFailureMessage(str, str).c_str());
|
|
}
|
|
|
|
// Tests formatting a char array when it's compared with a string object.
|
|
// In this case we want to print the array as a C string.
|
|
|
|
// char array vs std::string
|
|
TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsStdString) {
|
|
const char str[] = "hi \"world\"";
|
|
EXPECT_STREQ("\"hi \\\"world\\\"\"", // The content should be escaped.
|
|
FormatForComparisonFailureMessage(str, ::std::string()).c_str());
|
|
}
|
|
|
|
#if GTEST_HAS_STD_WSTRING
|
|
// wchar_t array vs std::wstring
|
|
TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsStdWString) {
|
|
const wchar_t str[] = L"hi \"w\0rld\"";
|
|
EXPECT_STREQ(
|
|
"L\"hi \\\"w\"", // The content should be escaped.
|
|
// Embedded NUL terminates the string.
|
|
FormatForComparisonFailureMessage(str, ::std::wstring()).c_str());
|
|
}
|
|
#endif
|
|
|
|
// Useful for testing PrintToString(). We cannot use EXPECT_EQ()
|
|
// there as its implementation uses PrintToString(). The caller must
|
|
// ensure that 'value' has no side effect.
|
|
#define EXPECT_PRINT_TO_STRING_(value, expected_string) \
|
|
EXPECT_TRUE(PrintToString(value) == (expected_string)) \
|
|
<< " where " #value " prints as " << (PrintToString(value))
|
|
|
|
TEST(PrintToStringTest, WorksForScalar) {
|
|
EXPECT_PRINT_TO_STRING_(123, "123");
|
|
}
|
|
|
|
TEST(PrintToStringTest, WorksForPointerToConstChar) {
|
|
const char* p = "hello";
|
|
EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
|
|
}
|
|
|
|
TEST(PrintToStringTest, WorksForPointerToNonConstChar) {
|
|
char s[] = "hello";
|
|
char* p = s;
|
|
EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
|
|
}
|
|
|
|
TEST(PrintToStringTest, EscapesForPointerToConstChar) {
|
|
const char* p = "hello\n";
|
|
EXPECT_PRINT_TO_STRING_(p, "\"hello\\n\"");
|
|
}
|
|
|
|
TEST(PrintToStringTest, EscapesForPointerToNonConstChar) {
|
|
char s[] = "hello\1";
|
|
char* p = s;
|
|
EXPECT_PRINT_TO_STRING_(p, "\"hello\\x1\"");
|
|
}
|
|
|
|
TEST(PrintToStringTest, WorksForArray) {
|
|
int n[3] = { 1, 2, 3 };
|
|
EXPECT_PRINT_TO_STRING_(n, "{ 1, 2, 3 }");
|
|
}
|
|
|
|
TEST(PrintToStringTest, WorksForCharArray) {
|
|
char s[] = "hello";
|
|
EXPECT_PRINT_TO_STRING_(s, "\"hello\"");
|
|
}
|
|
|
|
TEST(PrintToStringTest, WorksForCharArrayWithEmbeddedNul) {
|
|
const char str_with_nul[] = "hello\0 world";
|
|
EXPECT_PRINT_TO_STRING_(str_with_nul, "\"hello\\0 world\"");
|
|
|
|
char mutable_str_with_nul[] = "hello\0 world";
|
|
EXPECT_PRINT_TO_STRING_(mutable_str_with_nul, "\"hello\\0 world\"");
|
|
}
|
|
|
|
TEST(PrintToStringTest, ContainsNonLatin) {
|
|
// Sanity test with valid UTF-8. Prints both in hex and as text.
|
|
std::string non_ascii_str = ::std::string("오전 4:30");
|
|
EXPECT_PRINT_TO_STRING_(non_ascii_str,
|
|
"\"\\xEC\\x98\\xA4\\xEC\\xA0\\x84 4:30\"\n"
|
|
" As Text: \"오전 4:30\"");
|
|
non_ascii_str = ::std::string("From ä — ẑ");
|
|
EXPECT_PRINT_TO_STRING_(non_ascii_str,
|
|
"\"From \\xC3\\xA4 \\xE2\\x80\\x94 \\xE1\\xBA\\x91\""
|
|
"\n As Text: \"From ä — ẑ\"");
|
|
}
|
|
|
|
TEST(IsValidUTF8Test, IllFormedUTF8) {
|
|
// The following test strings are ill-formed UTF-8 and are printed
|
|
// as hex only (or ASCII, in case of ASCII bytes) because IsValidUTF8() is
|
|
// expected to fail, thus output does not contain "As Text:".
|
|
|
|
static const char *const kTestdata[][2] = {
|
|
// 2-byte lead byte followed by a single-byte character.
|
|
{"\xC3\x74", "\"\\xC3t\""},
|
|
// Valid 2-byte character followed by an orphan trail byte.
|
|
{"\xC3\x84\xA4", "\"\\xC3\\x84\\xA4\""},
|
|
// Lead byte without trail byte.
|
|
{"abc\xC3", "\"abc\\xC3\""},
|
|
// 3-byte lead byte, single-byte character, orphan trail byte.
|
|
{"x\xE2\x70\x94", "\"x\\xE2p\\x94\""},
|
|
// Truncated 3-byte character.
|
|
{"\xE2\x80", "\"\\xE2\\x80\""},
|
|
// Truncated 3-byte character followed by valid 2-byte char.
|
|
{"\xE2\x80\xC3\x84", "\"\\xE2\\x80\\xC3\\x84\""},
|
|
// Truncated 3-byte character followed by a single-byte character.
|
|
{"\xE2\x80\x7A", "\"\\xE2\\x80z\""},
|
|
// 3-byte lead byte followed by valid 3-byte character.
|
|
{"\xE2\xE2\x80\x94", "\"\\xE2\\xE2\\x80\\x94\""},
|
|
// 4-byte lead byte followed by valid 3-byte character.
|
|
{"\xF0\xE2\x80\x94", "\"\\xF0\\xE2\\x80\\x94\""},
|
|
// Truncated 4-byte character.
|
|
{"\xF0\xE2\x80", "\"\\xF0\\xE2\\x80\""},
|
|
// Invalid UTF-8 byte sequences embedded in other chars.
|
|
{"abc\xE2\x80\x94\xC3\x74xyc", "\"abc\\xE2\\x80\\x94\\xC3txyc\""},
|
|
{"abc\xC3\x84\xE2\x80\xC3\x84xyz",
|
|
"\"abc\\xC3\\x84\\xE2\\x80\\xC3\\x84xyz\""},
|
|
// Non-shortest UTF-8 byte sequences are also ill-formed.
|
|
// The classics: xC0, xC1 lead byte.
|
|
{"\xC0\x80", "\"\\xC0\\x80\""},
|
|
{"\xC1\x81", "\"\\xC1\\x81\""},
|
|
// Non-shortest sequences.
|
|
{"\xE0\x80\x80", "\"\\xE0\\x80\\x80\""},
|
|
{"\xf0\x80\x80\x80", "\"\\xF0\\x80\\x80\\x80\""},
|
|
// Last valid code point before surrogate range, should be printed as text,
|
|
// too.
|
|
{"\xED\x9F\xBF", "\"\\xED\\x9F\\xBF\"\n As Text: \"\""},
|
|
// Start of surrogate lead. Surrogates are not printed as text.
|
|
{"\xED\xA0\x80", "\"\\xED\\xA0\\x80\""},
|
|
// Last non-private surrogate lead.
|
|
{"\xED\xAD\xBF", "\"\\xED\\xAD\\xBF\""},
|
|
// First private-use surrogate lead.
|
|
{"\xED\xAE\x80", "\"\\xED\\xAE\\x80\""},
|
|
// Last private-use surrogate lead.
|
|
{"\xED\xAF\xBF", "\"\\xED\\xAF\\xBF\""},
|
|
// Mid-point of surrogate trail.
|
|
{"\xED\xB3\xBF", "\"\\xED\\xB3\\xBF\""},
|
|
// First valid code point after surrogate range, should be printed as text,
|
|
// too.
|
|
{"\xEE\x80\x80", "\"\\xEE\\x80\\x80\"\n As Text: \"\""}
|
|
};
|
|
|
|
for (int i = 0; i < int(sizeof(kTestdata)/sizeof(kTestdata[0])); ++i) {
|
|
EXPECT_PRINT_TO_STRING_(kTestdata[i][0], kTestdata[i][1]);
|
|
}
|
|
}
|
|
|
|
#undef EXPECT_PRINT_TO_STRING_
|
|
|
|
TEST(UniversalTersePrintTest, WorksForNonReference) {
|
|
::std::stringstream ss;
|
|
UniversalTersePrint(123, &ss);
|
|
EXPECT_EQ("123", ss.str());
|
|
}
|
|
|
|
TEST(UniversalTersePrintTest, WorksForReference) {
|
|
const int& n = 123;
|
|
::std::stringstream ss;
|
|
UniversalTersePrint(n, &ss);
|
|
EXPECT_EQ("123", ss.str());
|
|
}
|
|
|
|
TEST(UniversalTersePrintTest, WorksForCString) {
|
|
const char* s1 = "abc";
|
|
::std::stringstream ss1;
|
|
UniversalTersePrint(s1, &ss1);
|
|
EXPECT_EQ("\"abc\"", ss1.str());
|
|
|
|
char* s2 = const_cast<char*>(s1);
|
|
::std::stringstream ss2;
|
|
UniversalTersePrint(s2, &ss2);
|
|
EXPECT_EQ("\"abc\"", ss2.str());
|
|
|
|
const char* s3 = nullptr;
|
|
::std::stringstream ss3;
|
|
UniversalTersePrint(s3, &ss3);
|
|
EXPECT_EQ("NULL", ss3.str());
|
|
}
|
|
|
|
TEST(UniversalPrintTest, WorksForNonReference) {
|
|
::std::stringstream ss;
|
|
UniversalPrint(123, &ss);
|
|
EXPECT_EQ("123", ss.str());
|
|
}
|
|
|
|
TEST(UniversalPrintTest, WorksForReference) {
|
|
const int& n = 123;
|
|
::std::stringstream ss;
|
|
UniversalPrint(n, &ss);
|
|
EXPECT_EQ("123", ss.str());
|
|
}
|
|
|
|
TEST(UniversalPrintTest, WorksForCString) {
|
|
const char* s1 = "abc";
|
|
::std::stringstream ss1;
|
|
UniversalPrint(s1, &ss1);
|
|
EXPECT_EQ(PrintPointer(s1) + " pointing to \"abc\"", std::string(ss1.str()));
|
|
|
|
char* s2 = const_cast<char*>(s1);
|
|
::std::stringstream ss2;
|
|
UniversalPrint(s2, &ss2);
|
|
EXPECT_EQ(PrintPointer(s2) + " pointing to \"abc\"", std::string(ss2.str()));
|
|
|
|
const char* s3 = nullptr;
|
|
::std::stringstream ss3;
|
|
UniversalPrint(s3, &ss3);
|
|
EXPECT_EQ("NULL", ss3.str());
|
|
}
|
|
|
|
TEST(UniversalPrintTest, WorksForCharArray) {
|
|
const char str[] = "\"Line\0 1\"\nLine 2";
|
|
::std::stringstream ss1;
|
|
UniversalPrint(str, &ss1);
|
|
EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss1.str());
|
|
|
|
const char mutable_str[] = "\"Line\0 1\"\nLine 2";
|
|
::std::stringstream ss2;
|
|
UniversalPrint(mutable_str, &ss2);
|
|
EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss2.str());
|
|
}
|
|
|
|
TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsEmptyTuple) {
|
|
Strings result = UniversalTersePrintTupleFieldsToStrings(::std::make_tuple());
|
|
EXPECT_EQ(0u, result.size());
|
|
}
|
|
|
|
TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsOneTuple) {
|
|
Strings result = UniversalTersePrintTupleFieldsToStrings(
|
|
::std::make_tuple(1));
|
|
ASSERT_EQ(1u, result.size());
|
|
EXPECT_EQ("1", result[0]);
|
|
}
|
|
|
|
TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTwoTuple) {
|
|
Strings result = UniversalTersePrintTupleFieldsToStrings(
|
|
::std::make_tuple(1, 'a'));
|
|
ASSERT_EQ(2u, result.size());
|
|
EXPECT_EQ("1", result[0]);
|
|
EXPECT_EQ("'a' (97, 0x61)", result[1]);
|
|
}
|
|
|
|
TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTersely) {
|
|
const int n = 1;
|
|
Strings result = UniversalTersePrintTupleFieldsToStrings(
|
|
::std::tuple<const int&, const char*>(n, "a"));
|
|
ASSERT_EQ(2u, result.size());
|
|
EXPECT_EQ("1", result[0]);
|
|
EXPECT_EQ("\"a\"", result[1]);
|
|
}
|
|
|
|
#if GTEST_HAS_ABSL
|
|
|
|
TEST(PrintOptionalTest, Basic) {
|
|
absl::optional<int> value;
|
|
EXPECT_EQ("(nullopt)", PrintToString(value));
|
|
value = {7};
|
|
EXPECT_EQ("(7)", PrintToString(value));
|
|
EXPECT_EQ("(1.1)", PrintToString(absl::optional<double>{1.1}));
|
|
EXPECT_EQ("(\"A\")", PrintToString(absl::optional<std::string>{"A"}));
|
|
}
|
|
|
|
struct NonPrintable {
|
|
unsigned char contents = 17;
|
|
};
|
|
|
|
TEST(PrintOneofTest, Basic) {
|
|
using Type = absl::variant<int, StreamableInGlobal, NonPrintable>;
|
|
EXPECT_EQ("('int' with value 7)", PrintToString(Type(7)));
|
|
EXPECT_EQ("('StreamableInGlobal' with value StreamableInGlobal)",
|
|
PrintToString(Type(StreamableInGlobal{})));
|
|
EXPECT_EQ(
|
|
"('testing::gtest_printers_test::NonPrintable' with value 1-byte object "
|
|
"<11>)",
|
|
PrintToString(Type(NonPrintable{})));
|
|
}
|
|
#endif // GTEST_HAS_ABSL
|
|
namespace {
|
|
class string_ref;
|
|
|
|
/**
|
|
* This is a synthetic pointer to a fixed size string.
|
|
*/
|
|
class string_ptr {
|
|
public:
|
|
string_ptr(const char* data, size_t size) : data_(data), size_(size) {}
|
|
|
|
string_ptr& operator++() noexcept {
|
|
data_ += size_;
|
|
return *this;
|
|
}
|
|
|
|
string_ref operator*() const noexcept;
|
|
|
|
private:
|
|
const char* data_;
|
|
size_t size_;
|
|
};
|
|
|
|
/**
|
|
* This is a synthetic reference of a fixed size string.
|
|
*/
|
|
class string_ref {
|
|
public:
|
|
string_ref(const char* data, size_t size) : data_(data), size_(size) {}
|
|
|
|
string_ptr operator&() const noexcept { return {data_, size_}; } // NOLINT
|
|
|
|
bool operator==(const char* s) const noexcept {
|
|
if (size_ > 0 && data_[size_ - 1] != 0) {
|
|
return std::string(data_, size_) == std::string(s);
|
|
} else {
|
|
return std::string(data_) == std::string(s);
|
|
}
|
|
}
|
|
|
|
private:
|
|
const char* data_;
|
|
size_t size_;
|
|
};
|
|
|
|
string_ref string_ptr::operator*() const noexcept { return {data_, size_}; }
|
|
|
|
TEST(string_ref, compare) {
|
|
const char* s = "alex\0davidjohn\0";
|
|
string_ptr ptr(s, 5);
|
|
EXPECT_EQ(*ptr, "alex");
|
|
EXPECT_TRUE(*ptr == "alex");
|
|
++ptr;
|
|
EXPECT_EQ(*ptr, "david");
|
|
EXPECT_TRUE(*ptr == "david");
|
|
++ptr;
|
|
EXPECT_EQ(*ptr, "john");
|
|
}
|
|
|
|
} // namespace
|
|
|
|
} // namespace gtest_printers_test
|
|
} // namespace testing
|