You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
510 lines
13 KiB
510 lines
13 KiB
// Copyright 2015 Keyboardio, inc. <jesse@keyboard.io>
|
|
// See "LICENSE" for license details
|
|
|
|
#define DEBUG_SERIAL false
|
|
|
|
/**
|
|
* TODO:
|
|
|
|
add mouse inertia
|
|
add series-of-character macros
|
|
add series of keystroke macros
|
|
use a lower-level USB API
|
|
|
|
*/
|
|
#include "KeyboardioFirmware.h"
|
|
#include <EEPROM.h> // Don't need this for CLI compilation, but do need it in the IDE
|
|
#include <Wire.h>
|
|
#include "KeyboardioSX1509.h"
|
|
#include "HID-Project.h"
|
|
|
|
|
|
|
|
|
|
const byte LEFT_SX1509_ADDRESS = 0x70; // SX1509 I2C address (10)
|
|
const byte RIGHT_SX1509_ADDRESS = 0x71; // SX1509 I2C address (11)
|
|
sx1509Class leftsx1509(LEFT_SX1509_ADDRESS);
|
|
sx1509Class rightsx1509(RIGHT_SX1509_ADDRESS);
|
|
|
|
int right_initted = 0;
|
|
int left_initted = 0;
|
|
|
|
#define TS(X) //Serial.print(micros() );Serial.print("\t");Serial.println(X);
|
|
|
|
|
|
void setup_matrix() {
|
|
//blank out the matrix.
|
|
for (byte col = 0; col < COLS; col++) {
|
|
for (byte row = 0; row < ROWS; row++) {
|
|
matrixState[row][col] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void set_keymap(Key keymapEntry, byte matrixStateEntry) {
|
|
if (keymapEntry.flags & SWITCH_TO_KEYMAP) {
|
|
// this logic sucks. there is a better way TODO this
|
|
if (! (keymapEntry.flags ^ ( MOMENTARY | SWITCH_TO_KEYMAP))) {
|
|
if (key_toggled_on(matrixStateEntry)) {
|
|
if ( keymapEntry.rawKey == KEYMAP_NEXT) {
|
|
temporary_keymap++;
|
|
} else if ( keymapEntry.rawKey == KEYMAP_PREVIOUS) {
|
|
temporary_keymap--;
|
|
} else {
|
|
temporary_keymap = keymapEntry.rawKey;
|
|
}
|
|
}
|
|
if (key_toggled_off(matrixStateEntry)) {
|
|
|
|
temporary_keymap = primary_keymap;
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (! (keymapEntry.flags ^ ( SWITCH_TO_KEYMAP))) {
|
|
// switch keymap and stay there
|
|
if (key_toggled_on(matrixStateEntry)) {
|
|
temporary_keymap = primary_keymap = keymapEntry.rawKey;
|
|
save_primary_keymap(primary_keymap);
|
|
#ifdef DEBUG_SERIAL
|
|
Serial.print("keymap is now:");
|
|
Serial.print(temporary_keymap);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void scan_matrix() {
|
|
x = 0;
|
|
y = 0;
|
|
//scan the Keyboard matrix looking for connections
|
|
for (byte row = 0; row < LEFT_ROWS; row++) {
|
|
TS("Scanning row ")
|
|
if (left_initted) {
|
|
leftsx1509.updatePinState(left_rowpins[row], LOW);
|
|
leftsx1509.sendPinStates();
|
|
leftsx1509.fetchPinStates();
|
|
}
|
|
if (right_initted) {
|
|
rightsx1509.updatePinState(right_rowpins[row], LOW);
|
|
rightsx1509.sendPinStates();
|
|
rightsx1509.fetchPinStates();
|
|
|
|
}
|
|
|
|
|
|
for (byte col = 0; col < LEFT_COLS; col++) {
|
|
TS("Scanning col")
|
|
//If we see an electrical connection on I->J,
|
|
|
|
matrixState[row][col] <<= 1;
|
|
|
|
matrixState[row][(COLS - 1) - col] <<= 1;
|
|
|
|
TS("Reading left pin")
|
|
if (left_initted && leftsx1509.readPrefetchedPin(left_colpins[col])) {
|
|
matrixState[row][col] |= 0;
|
|
} else {
|
|
matrixState[row][col] |= 1;
|
|
}
|
|
|
|
TS("Reading right pin")
|
|
if (right_initted && rightsx1509.readPrefetchedPin(right_colpins[col])) {
|
|
matrixState[row][(COLS - 1) - col] |= 0;
|
|
} else {
|
|
matrixState[row][(COLS - 1) - col] |= 1;
|
|
}
|
|
|
|
|
|
// while we're inspecting the electrical matrix, we look
|
|
// to see if the Key being held is a firmware level
|
|
// metakey, so we can act on it, lest we only discover
|
|
// that we should be looking at a seconary Keymap halfway
|
|
// through the matrix scan
|
|
|
|
|
|
TS("calling send_key_event")
|
|
send_key_event(row, col);
|
|
if (right_initted)
|
|
send_key_event(row, (COLS - 1) - col);
|
|
|
|
}
|
|
TS("clearing output pins")
|
|
if (left_initted)
|
|
leftsx1509.updatePinState(left_rowpins[row], HIGH);
|
|
if (right_initted)
|
|
rightsx1509.updatePinState(right_rowpins[row], HIGH);
|
|
}
|
|
TS("Sending key report");
|
|
Keyboard.sendReport();
|
|
handle_mouse_movement(x, y);
|
|
}
|
|
|
|
// Command mode
|
|
//
|
|
|
|
|
|
void command_reboot_bootloader() {
|
|
Keyboard.println("Rebooting to bootloader");
|
|
Serial.end();
|
|
|
|
|
|
// Set the magic bits to get a Caterina-based device
|
|
// to reboot into the bootloader and stay there, rather
|
|
// than run move onward
|
|
//
|
|
// These values are the same as those defined in
|
|
// Caterina.c
|
|
|
|
uint16_t bootKey = 0x7777;
|
|
uint16_t *const bootKeyPtr = (uint16_t *)0x0800;
|
|
|
|
// Stash the magic key
|
|
*bootKeyPtr = bootKey;
|
|
|
|
// Set a watchdog timer
|
|
wdt_enable(WDTO_120MS);
|
|
|
|
while (1) {} // This infinite loop ensures nothing else
|
|
// happens before the watchdog reboots us
|
|
}
|
|
|
|
void command_plugh() {
|
|
commandMode = !commandMode;
|
|
if (commandMode) {
|
|
Keyboard.println("");
|
|
Keyboard.println("Entering command mode!");
|
|
|
|
} else {
|
|
Keyboard.println("Leaving command mode!");
|
|
Keyboard.println("");
|
|
}
|
|
}
|
|
|
|
void setup_command_mode() {
|
|
commandBufferSize = 0;
|
|
commandMode = false;
|
|
commandPromptPrinted = false;
|
|
}
|
|
boolean command_ends_in_return() {
|
|
if (
|
|
commandBuffer[commandBufferSize - 1] == KEY_ENTER ||
|
|
commandBuffer[commandBufferSize - 1] == KEY_RETURN ) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
boolean is_command_buffer(byte* myCommand) {
|
|
if (!command_ends_in_return()) {
|
|
return false;
|
|
}
|
|
int i = 0;
|
|
do {
|
|
if (commandBuffer[i] != myCommand[i]) {
|
|
return false;
|
|
}
|
|
} while (myCommand[++i] != 0x00);
|
|
return true;
|
|
}
|
|
|
|
|
|
void process_command_buffer() {
|
|
if (!command_ends_in_return()) {
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
// This is the only command we might want to execute when
|
|
// we're not in command mode, as it's the only way to toggle
|
|
// command mode on
|
|
static byte cmd_plugh[] = {KEY_P, KEY_L, KEY_U, KEY_G, KEY_H, 0x00};
|
|
if (is_command_buffer(cmd_plugh)) {
|
|
command_plugh();
|
|
}
|
|
|
|
// if we've toggled command mode off, get out of here.
|
|
if (!commandMode) {
|
|
commandBufferSize = 0;
|
|
return;
|
|
}
|
|
|
|
// Handle all the other commands here
|
|
static byte cmd_reboot_bootloader[] = { KEY_B, KEY_O, KEY_O, KEY_T, KEY_L, KEY_O, KEY_A, KEY_D, KEY_E, KEY_R, 0x00};
|
|
static byte cmd_version[] = { KEY_V, KEY_E, KEY_R, KEY_S, KEY_I, KEY_O, KEY_N, 0x00};
|
|
|
|
if (is_command_buffer(cmd_reboot_bootloader)) {
|
|
command_reboot_bootloader();
|
|
} else if (is_command_buffer(cmd_version)) {
|
|
Keyboard.println("");
|
|
Keyboard.print("This is Keyboardio Firmware ");
|
|
Keyboard.println(VERSION);
|
|
}
|
|
|
|
|
|
if (!commandPromptPrinted ) {
|
|
Keyboard.print(">>> ");
|
|
commandPromptPrinted = true;
|
|
commandBufferSize = 0;
|
|
}
|
|
}
|
|
|
|
|
|
void setup() {
|
|
wdt_disable();
|
|
Serial.begin(115200);
|
|
//usbMaxPower = 100;
|
|
Keyboard.begin();
|
|
Mouse.begin();
|
|
setup_leds();
|
|
led_bootup();
|
|
setup_command_mode();
|
|
setup_matrix();
|
|
setup_pins();
|
|
rightsx1509.fetchPinStates();
|
|
|
|
temporary_keymap = primary_keymap = load_primary_keymap();
|
|
}
|
|
|
|
String myApp;
|
|
|
|
void loop() {
|
|
// if(Serial.available()) {
|
|
// myApp = Serial.readString();
|
|
// myApp.trim();
|
|
// }
|
|
TS("A noop takes...")
|
|
TS("about to scan the matrix")
|
|
scan_matrix();
|
|
TS("updating LEDs");
|
|
update_leds(temporary_keymap == NUMPAD_KEYMAP);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void save_primary_keymap(byte keymap) {
|
|
EEPROM.write(EEPROM_KEYMAP_LOCATION, keymap);
|
|
}
|
|
|
|
byte load_primary_keymap() {
|
|
byte keymap = EEPROM.read(EEPROM_KEYMAP_LOCATION);
|
|
if (keymap >= KEYMAPS ) {
|
|
return 0; // undefined positions get saved as 255
|
|
}
|
|
return 0; // return keymap;
|
|
}
|
|
|
|
|
|
|
|
|
|
// Debugging Reporting
|
|
//
|
|
|
|
void report_matrix() {
|
|
#ifdef DEBUG_SERIAL
|
|
if (reporting_counter++ % 100 == 0 ) {
|
|
for (byte row = 0; row < ROWS; row++) {
|
|
for (byte col = 0; col < COLS; col++) {
|
|
Serial.print(matrixState[row][col], HEX);
|
|
Serial.print(", ");
|
|
|
|
}
|
|
Serial.println("");
|
|
}
|
|
Serial.println("");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void report(byte row, byte col, boolean value) {
|
|
#ifdef DEBUG_SERIAL
|
|
Serial.print("Detected a change on ");
|
|
Serial.print(col);
|
|
Serial.print(" ");
|
|
Serial.print(row);
|
|
Serial.print(" to ");
|
|
Serial.print(value);
|
|
Serial.println(".");
|
|
#endif
|
|
}
|
|
|
|
|
|
// Sending events to the usb host
|
|
|
|
void handle_synthetic_key_press(byte switchState, Key mappedKey) {
|
|
if (mappedKey.flags & IS_CONSUMER) {
|
|
if (key_toggled_on (switchState)) {
|
|
ConsumerControl.press(mappedKey.rawKey);
|
|
}
|
|
}
|
|
|
|
else if (mappedKey.flags & IS_INTERNAL) {
|
|
if (key_toggled_on (switchState)) {
|
|
if (mappedKey.rawKey == LED_TOGGLE) {
|
|
next_led_mode();
|
|
}
|
|
}
|
|
} else if (mappedKey.flags & IS_SYSCTL) {
|
|
if (key_toggled_on (switchState)) {
|
|
SystemControl.press(mappedKey.rawKey);
|
|
}
|
|
} else if (mappedKey.flags & IS_MACRO) {
|
|
if (key_toggled_on (switchState)) {
|
|
if (mappedKey.rawKey == 1) {
|
|
Serial.print("Keyboard.IO keyboard driver v0.00");
|
|
}
|
|
}
|
|
} else if (mappedKey.rawKey == KEY_MOUSE_BTN_L
|
|
|| mappedKey.rawKey == KEY_MOUSE_BTN_M
|
|
|| mappedKey.rawKey == KEY_MOUSE_BTN_R) {
|
|
if (key_toggled_on (switchState)) {
|
|
Mouse.press(mappedKey.rawKey);
|
|
end_warping();
|
|
} else if (key_is_pressed(switchState)) {
|
|
} else if (Mouse.isPressed(mappedKey.rawKey) ) {
|
|
Mouse.release(mappedKey.rawKey);
|
|
}
|
|
}
|
|
}
|
|
|
|
void send_key_event(byte row, byte col) {
|
|
//for every newly pressed button, figure out what logical key it is and send a key down event
|
|
// for every newly released button, figure out what logical key it is and send a key up event
|
|
|
|
|
|
// TODO:switch to sending raw HID packets
|
|
|
|
// really, these are signed small ints
|
|
|
|
byte switchState = matrixState[row][col];
|
|
Key mappedKey = keymaps[temporary_keymap][row][col];
|
|
|
|
set_keymap(keymaps[primary_keymap][row][col], switchState);
|
|
|
|
if (mappedKey.flags & MOUSE_KEY ) {
|
|
if (mappedKey.rawKey & MOUSE_WARP) {
|
|
if (key_toggled_on(switchState)) {
|
|
warp_mouse(mappedKey);
|
|
}
|
|
} else {
|
|
handle_mouse_key_press(switchState, mappedKey, x, y);
|
|
}
|
|
|
|
} else if (mappedKey.flags & SYNTHETIC_KEY) {
|
|
handle_synthetic_key_press(switchState, mappedKey);
|
|
} else {
|
|
if (key_is_pressed(switchState)) {
|
|
if (key_toggled_on (switchState)) {
|
|
press_key(mappedKey);
|
|
}
|
|
} else if (key_toggled_off (switchState)) {
|
|
release_key(mappedKey);
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
|
|
void press_key(Key mappedKey) {
|
|
if (mappedKey.flags & SHIFT_HELD) {
|
|
Keyboard.press(Key_LShift.rawKey);
|
|
}
|
|
Keyboard.press(mappedKey.rawKey);
|
|
if (commandBufferSize >= 31) {
|
|
commandBufferSize = 0;
|
|
}
|
|
commandBuffer[commandBufferSize++] = mappedKey.rawKey;
|
|
|
|
|
|
if ( mappedKey.rawKey == KEY_ENTER ||
|
|
mappedKey.rawKey == KEY_RETURN ) {
|
|
commandPromptPrinted = false;
|
|
process_command_buffer();
|
|
commandBufferSize = 0;
|
|
}
|
|
}
|
|
|
|
void release_key(Key mappedKey) {
|
|
if (mappedKey.flags & SHIFT_HELD) {
|
|
Keyboard.release(Key_LShift.rawKey);
|
|
}
|
|
|
|
Keyboard.release(mappedKey.rawKey);
|
|
}
|
|
|
|
|
|
|
|
void make_input(sx1509Class sx1509, int pin) {
|
|
sx1509.pinDir(pin, INPUT); // Set SX1509 pin 1 as an input
|
|
sx1509.writePin(pin, HIGH); // Activate pull-up
|
|
|
|
|
|
}
|
|
|
|
void make_output(sx1509Class sx1509, int pin) {
|
|
sx1509.pinDir(pin, OUTPUT);
|
|
sx1509.writePin(pin, HIGH);
|
|
|
|
}
|
|
|
|
|
|
void setup_pins() {
|
|
right_initted = setup_sx1509(rightsx1509, right_colpins, right_rowpins);
|
|
left_initted = setup_sx1509(leftsx1509, left_colpins, left_rowpins);
|
|
|
|
}
|
|
|
|
|
|
int setup_sx1509 (sx1509Class sx1509, int colpins[], int rowpins[]) {
|
|
byte initted;
|
|
|
|
for (int counter = 0; counter < 10; counter++) {
|
|
initted = sx1509.init();
|
|
|
|
if (initted)
|
|
break;
|
|
}
|
|
|
|
if (initted) { // init ok
|
|
// In order to use the keypad, the clock must first be
|
|
// configured. We can call configureClock() with the default
|
|
// parameters (2MHz internal oscillator, no clock in/out).
|
|
sx1509.configClock();
|
|
|
|
|
|
|
|
// the debounceConfig function sets the debounce time. This
|
|
// function's parameter should be a 3-bit value.
|
|
// 0: 0.5ms * 2MHz/fOSC
|
|
// 1: 1ms * 2MHz/fOSC
|
|
// 2: 2ms * 2MHz/fOSC
|
|
// 3: 4ms * 2MHz/fOSC
|
|
// 4: 8ms * 2MHz/fOSC
|
|
// 5: 16ms * 2MHz/fOSC
|
|
// 6: 32ms * 2MHz/fOSC
|
|
// 7: 64ms * 2MHz/fOSC
|
|
sx1509.debounceConfig(4); // maximum debuonce time
|
|
|
|
|
|
for (int i = 0; i < LEFT_ROWS; i++) {
|
|
make_output(sx1509, rowpins[i]);
|
|
}
|
|
|
|
for (int j = 0; j < LEFT_COLS; j++) {
|
|
make_input(sx1509, colpins[j]);
|
|
sx1509.debounceEnable(colpins[j]);
|
|
}
|
|
|
|
|
|
}
|
|
return initted;
|
|
|
|
}
|