You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Kaleidoscope/ArduinoKeyboard.ino

497 lines
11 KiB

// Do not remove the include below
#include "ArduinoKeyboard.h"
// Copyright 2013 Jesse Vincent <jesse@fsck.com>
// All Rights Reserved. (To be licensed under an opensource license
// before the release of the keyboard.io model 01
/**
* TODO:
add mouse acceleration/deceleration
add mouse inertia
add series-of-character macros
add series of keystroke macros
use a lower-level USB API
*
**/
#include <stdio.h>
#include <math.h>
#include "KeyboardConfig.h"
#include "keymaps_generated.h"
#include <EEPROM.h> // Don't need this for CLI compilation, but do need it in the IDE
//extern int usbMaxPower;
byte matrixState[ROWS][COLS];
byte charsBeingReported[KEYS_HELD_BUFFER]; // A bit vector for the 256 keys we might conceivably be holding down
byte charsReportedLastTime[KEYS_HELD_BUFFER]; // A bit vector for the 256 keys we might conceivably be holding down
long reporting_counter = 0;
byte current_layer = 0;
byte active_layer = 0;
double mouseActiveForCycles = 0;
float carriedOverX = 0;
float carriedOverY = 0;
void setup_matrix()
{
//blank out the matrix.
for (byte col = 0; col < COLS; col++) {
for (byte row = 0; row < ROWS; row++) {
matrixState[row][col] = 0;
}
}
}
void reset_matrix()
{
for (byte col = 0; col < COLS; col++) {
for (byte row = 0; row < ROWS; row++) {
matrixState[row][col] <<= 1;
}
}
}
void set_keymap_layer(Key keymapEntry, byte matrixStateEntry) {
if (keymapEntry.flags & SWITCH_TO_LAYER) {
// this logic sucks. there is a better way TODO this
if (! (keymapEntry.flags ^ ( MOMENTARY | SWITCH_TO_LAYER))) {
if (key_is_pressed(matrixStateEntry)) {
if ( keymapEntry.rawKey == LAYER_NEXT) {
active_layer++;
} else if ( keymapEntry.rawKey == LAYER_PREVIOUS) {
active_layer--;
} else {
active_layer = keymapEntry.rawKey;
}
}
} else if (! (keymapEntry.flags ^ ( SWITCH_TO_LAYER))) {
// switch layer and stay there
if (key_toggled_on(matrixStateEntry)) {
current_layer = active_layer = keymapEntry.rawKey;
save_current_layer(current_layer);
}
}
}
}
void handle_immediate_action_during_matrix_scan(Key keymapEntry, byte matrixStateEntry) {
set_keymap_layer(keymapEntry, matrixStateEntry);
}
void scan_matrix()
{
//scan the Keyboard matrix looking for connections
for (byte row = 0; row < ROWS; row++) {
digitalWrite(rowPins[row], LOW);
for (byte col = 0; col < COLS; col++) {
//If we see an electrical connection on I->J,
if (digitalRead(colPins[col])) {
matrixState[row][col] |= 0; // noop. just here for clarity
} else {
matrixState[row][col] |= 1; // noop. just here for clarity
}
// while we're inspecting the electrical matrix, we look
// to see if the Key being held is a firmware level
// metakey, so we can act on it, lest we only discover
// that we should be looking at a seconary Keymap halfway through the matrix scan
handle_immediate_action_during_matrix_scan(keymaps[active_layer][row][col], matrixState[row][col]);
}
digitalWrite(rowPins[row], HIGH);
}
}
void setup()
{
//usbMaxPower = 100;
Serial.begin(115200);
Keyboard.begin();
Mouse.begin();
setup_matrix();
setup_pins();
current_layer = load_current_layer();
active_layer = current_layer;
}
void loop()
{
active_layer = current_layer;
scan_matrix();
send_key_events();
reset_matrix();
}
// switch debouncing and status
//
//
boolean key_was_pressed (byte keyState)
{
if ( byte((keyState >> 4)) ^ B00001111 ) {
return false;
} else {
return true;
}
}
boolean key_was_not_pressed (byte keyState)
{
if ( byte((keyState >> 4)) ^ B00000000 ) {
return false;
} else {
return true;
}
}
boolean key_is_pressed (byte keyState)
{
if ( byte((keyState << 4)) ^ B11110000 ) {
return false;
} else {
return true;
}
}
boolean key_is_not_pressed (byte keyState)
{
if ( byte((keyState << 4)) ^ B00000000 ) {
return false;
} else {
return true;
}
}
boolean key_toggled_on(byte keyState)
{
if (key_is_pressed(keyState) && key_was_not_pressed(keyState)) {
return true;
} else {
return false;
}
}
boolean key_toggled_off(byte keyState)
{
if (key_was_pressed(keyState) && key_is_not_pressed(keyState)) {
return true;
} else {
return false;
}
}
void save_current_layer(byte layer)
{
EEPROM.write(EEPROM_LAYER_LOCATION, layer);
}
byte load_current_layer()
{
byte layer = EEPROM.read(EEPROM_LAYER_LOCATION);
if (layer >= LAYERS ) {
return 0; // undefined positions get saved as 255
}
return layer;
}
// Debugging Reporting
//
void report_matrix()
{
#ifdef DEBUG_SERIAL
if (reporting_counter++ % 100 == 0 ) {
for (byte row = 0; row < ROWS; row++) {
for (byte col = 0; col < COLS; col++) {
Serial.print(matrixState[row][col], HEX);
Serial.print(", ");
}
Serial.println("");
}
Serial.println("");
}
#endif
}
void report(byte row, byte col, boolean value)
{
#ifdef DEBUG_SERIAL
Serial.print("Detected a change on ");
Serial.print(col);
Serial.print(" ");
Serial.print(row);
Serial.print(" to ");
Serial.print(value);
Serial.println(".");
#endif
}
// Mouse-related methods
//
//
double mouse_accel (double cycles)
{
double accel = atan((cycles / 50) - 5);
accel += 1.5707963267944; // we want the whole s curve, not just the bit that's usually above the x and y axes;
accel = accel * 0.85;
if (accel < 0.25) {
accel = 0.25;
}
return accel;
}
void handle_mouse_movement( char x, char y)
{
if (x != 0 || y != 0) {
mouseActiveForCycles++;
double accel = (double) mouse_accel(mouseActiveForCycles);
float moveX = 0;
float moveY = 0;
if (x > 0) {
moveX = (x * accel) + carriedOverX;
carriedOverX = moveX - floor(moveX);
} else if (x < 0) {
moveX = (x * accel) - carriedOverX;
carriedOverX = ceil(moveX) - moveX;
}
if (y > 0) {
moveY = (y * accel) + carriedOverY;
carriedOverY = moveY - floor(moveY);
} else if (y < 0) {
moveY = (y * accel) - carriedOverY;
carriedOverY = ceil(moveY) - moveY;
}
#ifdef DEBUG_SERIAL
Serial.println();
Serial.print("cycles: ");
Serial.println(mouseActiveForCycles);
Serial.print("Accel: ");
Serial.print(accel);
Serial.print(" moveX is ");
Serial.print(moveX);
Serial.print(" moveY is ");
Serial.print(moveY);
Serial.print(" carriedoverx is ");
Serial.print(carriedOverX);
Serial.print(" carriedOverY is ");
Serial.println(carriedOverY);
#endif
Mouse.move(moveX, moveY, 0);
} else {
mouseActiveForCycles = 0;
}
}
//
// Key Reports
//
void release_keys_not_being_pressed()
{
// we use charsReportedLastTime to figure out what we might
// not be holding anymore and can now release. this is
// destructive to charsReportedLastTime
for (byte i = 0; i < KEYS_HELD_BUFFER; i++) {
// for each key we were holding as of the end of the last cycle
// see if we're still holding it
// if we're not, call an explicit Release
if (charsReportedLastTime[i] != 0x00) {
// if there _was_ a character in this slot, go check the
// currently held characters
for (byte j = 0; j < KEYS_HELD_BUFFER; j++) {
if (charsReportedLastTime[i] == charsBeingReported[j]) {
// if's still held, we don't need to do anything.
charsReportedLastTime[i] = 0x00;
break;
}
}
}
}
for (byte i = 0; i < KEYS_HELD_BUFFER; i++) {
if (charsReportedLastTime[i] != 0x00) {
Keyboard.release(charsReportedLastTime[i]);
}
}
}
void record_key_being_pressed(byte character)
{
for (byte i = 0; i < KEYS_HELD_BUFFER; i++) {
// todo - deal with overflowing the 12 key buffer here
if (charsBeingReported[i] == 0x00) {
charsBeingReported[i] = character;
break;
}
}
}
void reset_key_report()
{
for (byte i = 0; i < KEYS_HELD_BUFFER; i++) {
charsReportedLastTime[i] = charsBeingReported[i];
charsBeingReported[i] = 0x00;
}
}
// Sending events to the usb host
void handle_synthetic_key_press(byte switchState, Key mappedKey) {
if (mappedKey.flags & IS_CONSUMER) {
if (key_toggled_on (switchState)) {
Keyboard.consumerControl(mappedKey.rawKey);
}
}
else if (mappedKey.flags & IS_SYSCTL) {
if (key_toggled_on (switchState)) {
Keyboard.systemControl(mappedKey.rawKey);
}
}
else if (mappedKey.flags & IS_MACRO) {
if (key_toggled_on (switchState)) {
if (mappedKey.rawKey == 1) {
Keyboard.print("Keyboard.IO keyboard driver v0.00");
}
}
} else if (mappedKey.rawKey == KEY_MOUSE_BTN_L
|| mappedKey.rawKey == KEY_MOUSE_BTN_M
|| mappedKey.rawKey == KEY_MOUSE_BTN_R) {
if (key_toggled_on (switchState)) {
Mouse.press(mappedKey.rawKey);
} else if (key_is_pressed(switchState)) {
} else if (Mouse.isPressed(mappedKey.rawKey) ) {
Mouse.release(mappedKey.rawKey);
}
}
}
void handle_mouse_key_press(byte switchState, Key mappedKey, char &x, char &y) {
if (key_is_pressed(switchState)) {
if (mappedKey.rawKey & MOUSE_UP) {
y -= 1;
}
if (mappedKey.rawKey & MOUSE_DN) {
y += 1;
}
if (mappedKey.rawKey & MOUSE_L) {
x -= 1;
}
if (mappedKey.rawKey & MOUSE_R) {
x += 1 ;
}
}
}
void send_key_events()
{
//for every newly pressed button, figure out what logical key it is and send a key down event
// for every newly released button, figure out what logical key it is and send a key up event
// TODO:switch to sending raw HID packets
// really, these are signed small ints
char x = 0;
char y = 0;
for (byte row = 0; row < ROWS; row++) {
for (byte col = 0; col < COLS; col++) {
byte switchState = matrixState[row][col];
Key mappedKey = keymaps[active_layer][row][col];
if (mappedKey.flags & MOUSE_KEY ) {
handle_mouse_key_press(matrixState[row][col], keymaps[active_layer][row][col], x, y);
} else if (mappedKey.flags & SYNTHETIC_KEY) {
handle_synthetic_key_press(matrixState[row][col], keymaps[active_layer][row][col]);
}
else {
if (key_is_pressed(switchState)) {
record_key_being_pressed(mappedKey.rawKey);
if (key_toggled_on (switchState)) {
Keyboard.press(mappedKey.rawKey);
}
} else if (key_toggled_off (switchState)) {
Keyboard.release(mappedKey.rawKey);
}
}
}
}
handle_mouse_movement(x, y);
release_keys_not_being_pressed();
}
// Hardware initialization
void setup_pins()
{
//set up the row pins as outputs
for (byte row = 0; row < ROWS; row++) {
pinMode(rowPins[row], OUTPUT);
digitalWrite(rowPins[row], HIGH);
}
for (byte col = 0; col < COLS; col++) {
pinMode(colPins[col], INPUT);
digitalWrite(colPins[col], HIGH);
//drive em high by default s it seems to be more reliable than driving em low
}
}