#include "LEDControl.h" LEDControl_::LEDControl_(void) { led_off.r = 0; led_off.g = 0; led_off.b = 0; led_steady.r = 0; led_steady.g = 255; led_steady.b = 0; led_blue.r = 0; led_blue.g = 0; led_blue.b = 255; led_dark_blue.r = 0; led_dark_blue.g = 0; led_dark_blue.b = 127; led_red.r = 255; led_red.g = 0; led_red.b = 0; led_dark_red.r = 127; led_dark_red.g = 0; led_dark_red.b = 0; } void LEDControl_::initialize_led_mode(uint8_t mode) { set_all_leds_to(led_off); if (mode == LED_MODE_OFF) { // set_all_leds_to(led_off); } else if (mode == LED_MODE_HEATMAP) { } else if (mode == LED_MODE_BREATHE) { } else if (mode == LED_MODE_RAINBOW) { } else if (mode == LED_MODE_RAINBOW_WAVE) { } else if (mode == LED_MODE_CHASE) { } else if (mode == LED_MODE_STEADY) { set_all_leds_to(led_steady); } } void LEDControl_::set_all_leds_to(cRGB color) { for (uint8_t i = 0; i < LED_COUNT; i++) { led_set_crgb_at(i, color); } } void LEDControl_::next_mode() { if (led_mode++ >= LED_MODES) { led_mode = 0; } } void LEDControl_::set_mode(uint8_t mode) { led_mode = mode; } void LEDControl_::update(uint8_t current_keymap) { if (current_keymap == NUMPAD_KEYMAP) { if (led_mode != LED_SPECIAL_MODE_NUMLOCK) { stored_led_mode = led_mode; } led_mode = LED_SPECIAL_MODE_NUMLOCK; } if (current_keymap != NUMPAD_KEYMAP && led_mode == LED_SPECIAL_MODE_NUMLOCK ) { led_mode = stored_led_mode; } if (led_mode != last_led_mode) { initialize_led_mode(led_mode); } if (led_mode == LED_MODE_OFF) { } else if (led_mode == LED_MODE_HEATMAP) { } else if (led_mode == LED_MODE_BREATHE) { effect_breathe_update(); } else if (led_mode == LED_MODE_RAINBOW) { effect_rainbow_update(); } else if (led_mode == LED_MODE_RAINBOW_WAVE) { effect_rainbow_wave_update(); } else if (led_mode == LED_MODE_CHASE) { effect_chase_update(); } else if (led_mode == LED_MODE_STEADY) { effect_steady_update(); } else if (led_mode == LED_SPECIAL_MODE_NUMLOCK) { effect_numlock_update(); } last_led_mode = led_mode; } void LEDControl_::effect_numlock_update() { for (uint8_t i = 0; i < 44; i++) { led_set_crgb_at(i, led_off); } for (uint8_t i = 44; i < LED_COUNT; i++) { led_set_crgb_at(i, led_red); } led_compute_breath(); led_set_crgb_at(60, led_breathe); // make numlock breathe led_sync(); } void LEDControl_::effect_steady_update() { led_sync(); } void LEDControl_::led_compute_breath() { // algorithm from http://sean.voisen.org/blog/2011/10/breathing-led-with-arduino/ breathe_brightness = (exp(sin(millis()/2000.0*PI)) - 0.36787944)*108.0; // change the brightness for next time through the loop: //breathe_brightness = breathe_brightness + breathe_fadeAmount; // reverse the direction of the fading at the ends of the fade: if (breathe_brightness == 0 || breathe_brightness == 150) { breathe_fadeAmount = -breathe_fadeAmount ; } hsv_to_rgb(&led_breathe,200, 255, breathe_brightness); } void LEDControl_::effect_breathe_update() { led_compute_breath(); set_all_leds_to(led_breathe); led_sync(); } void LEDControl_::effect_chase_update() { if (current_chase_counter++ < chase_threshold) { return; } current_chase_counter = 0; led_set_crgb_at(pos - (chase_sign* chase_pixels), led_off); led_set_crgb_at(pos, led_off); pos += chase_sign; if (pos >= LED_COUNT || pos <= 0) { chase_sign = -chase_sign; } led_set_crgb_at(pos, led_blue); led_set_crgb_at(pos - (chase_sign * chase_pixels), led_red); led_sync(); } void LEDControl_::effect_rainbow_update() { if (rainbow_current_ticks++ < rainbow_ticks) { return; } else { rainbow_current_ticks = 0; } hsv_to_rgb( &rainbow, rainbow_hue, rainbow_saturation, rainbow_value); rainbow_hue += rainbow_steps; if (rainbow_hue >= 255) { rainbow_hue %= 255; } set_all_leds_to(rainbow); led_sync(); } void LEDControl_::effect_rainbow_wave_update() { if (rainbow_current_ticks++ < rainbow_wave_ticks) { return; } else { rainbow_current_ticks = 0; } for (uint8_t i = 0; i < LED_COUNT; i++) { uint16_t key_hue = rainbow_hue +16*(i/4); if (key_hue >= 255) { key_hue %= 255; } hsv_to_rgb(&rainbow, key_hue, rainbow_saturation, rainbow_value); led_set_crgb_at(i,rainbow); } rainbow_hue += rainbow_wave_steps; if (rainbow_hue >= 255) { rainbow_hue %= 255; } led_sync(); } void LEDControl_::boot_animation() { set_all_leds_to(led_off); type_letter(LED_K); type_letter(LED_E); type_letter(LED_Y); type_letter(LED_B); type_letter(LED_O); type_letter(LED_A); type_letter(LED_R); type_letter(LED_D); type_letter(LED_I); type_letter(LED_O); type_letter(LED_SPACE); type_letter(LED_0); type_letter(LED_PERIOD); type_letter(LED_9); led_mode = LED_MODE_RAINBOW_WAVE; } void LEDControl_::type_letter(uint8_t letter) { led_set_crgb_at(letter,led_red); led_sync(); delay(250); led_set_crgb_at(letter,led_off); led_sync(); delay(10); } // From http://web.mit.edu/storborg/Public/hsvtorgb.c - talk to Scott about licensing void LEDControl_::hsv_to_rgb(cRGB *cRGB, uint16_t h, uint16_t s, uint16_t v) { /* HSV to RGB conversion function with only integer * math */ uint16_t region, fpart, p, q, t; if(s == 0) { /* color is grayscale */ cRGB->r = cRGB->g = cRGB->b = v; return; } /* make hue 0-5 */ region = h / 43; /* find remainder part, make it from 0-255 */ fpart = (h - (region * 43)) * 6; /* calculate temp vars, doing integer multiplication */ p = (v * (255 - s)) >> 8; q = (v * (255 - ((s * fpart) >> 8))) >> 8; t = (v * (255 - ((s * (255 - fpart)) >> 8))) >> 8; /* assign temp vars based on color cone region */ switch(region) { case 0: cRGB->r = v; cRGB->g = t; cRGB->b = p; break; case 1: cRGB->r = q; cRGB->g = v; cRGB->b = p; break; case 2: cRGB->r = p; cRGB->g = v; cRGB->b = t; break; case 3: cRGB->r = p; cRGB->g = q; cRGB->b = v; break; case 4: cRGB->r = t; cRGB->g = p; cRGB->b = v; break; default: cRGB->r = v; cRGB->g = p; cRGB->b = q; break; } return; } LEDControl_ LEDControl;