// Copyright 2015 Keyboardio, inc. // See "LICENSE" for license details #define DEBUG_SERIAL false /** * TODO: add mouse inertia add series-of-character macros add series of keystroke macros use a lower-level USB API */ #include "KeyboardioFirmware.h" #include // Don't need this for CLI compilation, but do need it in the IDE #include #include "KeyboardioSX1509.h" #include "HID-Project.h" const byte LEFT_SX1509_ADDRESS = 0x70; // SX1509 I2C address (10) const byte RIGHT_SX1509_ADDRESS = 0x71; // SX1509 I2C address (11) sx1509Class leftsx1509(LEFT_SX1509_ADDRESS); sx1509Class rightsx1509(RIGHT_SX1509_ADDRESS); int right_initted = 0; int left_initted = 0; #define TS(X) //Serial.print(micros() );Serial.print("\t");Serial.println(X); void setup_matrix() { reset_key_report(); //blank out the matrix. for (byte col = 0; col < COLS; col++) { for (byte row = 0; row < ROWS; row++) { matrixState[row][col] = 0; } } } void set_keymap(Key keymapEntry, byte matrixStateEntry) { if (keymapEntry.flags & SWITCH_TO_KEYMAP) { // this logic sucks. there is a better way TODO this if (! (keymapEntry.flags ^ ( MOMENTARY | SWITCH_TO_KEYMAP))) { if (key_toggled_on(matrixStateEntry)) { if ( keymapEntry.rawKey == KEYMAP_NEXT) { temporary_keymap++; } else if ( keymapEntry.rawKey == KEYMAP_PREVIOUS) { temporary_keymap--; } else { temporary_keymap = keymapEntry.rawKey; } } if (key_toggled_off(matrixStateEntry)) { temporary_keymap = primary_keymap; } } else if (! (keymapEntry.flags ^ ( SWITCH_TO_KEYMAP))) { // switch keymap and stay there if (key_toggled_on(matrixStateEntry)) { temporary_keymap = primary_keymap = keymapEntry.rawKey; save_primary_keymap(primary_keymap); #ifdef DEBUG_SERIAL Serial.print("keymap is now:"); Serial.print(temporary_keymap); #endif } } } } void scan_matrix() { x = 0; y = 0; //scan the Keyboard matrix looking for connections for (byte row = 0; row < LEFT_ROWS; row++) { TS("Scanning row ") if (left_initted) { leftsx1509.updatePinState(left_rowpins[row], LOW); leftsx1509.sendPinStates(); leftsx1509.fetchPinStates(); } if (right_initted) { rightsx1509.updatePinState(right_rowpins[row], LOW); rightsx1509.sendPinStates(); rightsx1509.fetchPinStates(); } for (byte col = 0; col < LEFT_COLS; col++) { TS("Scanning col") //If we see an electrical connection on I->J, matrixState[row][col] <<= 1; matrixState[row][(COLS - 1) - col] <<= 1; TS("Reading left pin") if (left_initted && leftsx1509.readPrefetchedPin(left_colpins[col])) { matrixState[row][col] |= 0; } else { matrixState[row][col] |= 1; } TS("Reading right pin") if (right_initted && rightsx1509.readPrefetchedPin(right_colpins[col])) { matrixState[row][(COLS - 1) - col] |= 0; } else { matrixState[row][(COLS - 1) - col] |= 1; } // while we're inspecting the electrical matrix, we look // to see if the Key being held is a firmware level // metakey, so we can act on it, lest we only discover // that we should be looking at a seconary Keymap halfway // through the matrix scan TS("calling send_key_event") send_key_event(row, col); if (right_initted) send_key_event(row, (COLS - 1) - col); } TS("clearing output pins") if (left_initted) leftsx1509.updatePinState(left_rowpins[row], HIGH); if (right_initted) rightsx1509.updatePinState(right_rowpins[row], HIGH); } TS("Releasing keys not being pressed") release_keys_not_being_pressed(); TS("Sending key report"); Keyboard.sendReport(); TS("clearing internal key report") reset_key_report(); handle_mouse_movement(x, y); } // Command mode // void command_reboot_bootloader() { Keyboard.println("Rebooting to bootloader"); Serial.end(); // Set the magic bits to get a Caterina-based device // to reboot into the bootloader and stay there, rather // than run move onward // // These values are the same as those defined in // Caterina.c uint16_t bootKey = 0x7777; uint16_t *const bootKeyPtr = (uint16_t *)0x0800; // Stash the magic key *bootKeyPtr = bootKey; // Set a watchdog timer wdt_enable(WDTO_120MS); while (1) {} // This infinite loop ensures nothing else // happens before the watchdog reboots us } void command_plugh() { commandMode = !commandMode; if (commandMode) { Keyboard.println(""); Keyboard.println("Entering command mode!"); } else { Keyboard.println("Leaving command mode!"); Keyboard.println(""); } } void setup_command_mode() { commandBufferSize = 0; commandMode = false; commandPromptPrinted = false; } boolean command_ends_in_return() { if ( commandBuffer[commandBufferSize - 1] == KEY_ENTER || commandBuffer[commandBufferSize - 1] == KEY_RETURN ) { return true; } else { return false; } } boolean is_command_buffer(byte* myCommand) { if (!command_ends_in_return()) { return false; } int i = 0; do { if (commandBuffer[i] != myCommand[i]) { return false; } } while (myCommand[++i] != NULL); return true; } void process_command_buffer() { if (!command_ends_in_return()) { return; } // This is the only command we might want to execute when // we're not in command mode, as it's the only way to toggle // command mode on static byte cmd_plugh[] = {KEY_P, KEY_L, KEY_U, KEY_G, KEY_H, NULL}; if (is_command_buffer(cmd_plugh)) { command_plugh(); } // if we've toggled command mode off, get out of here. if (!commandMode) { commandBufferSize = 0; return; } // Handle all the other commands here static byte cmd_reboot_bootloader[] = { KEY_B, KEY_O, KEY_O, KEY_T, KEY_L, KEY_O, KEY_A, KEY_D, KEY_E, KEY_R, NULL}; static byte cmd_version[] = { KEY_V, KEY_E, KEY_R, KEY_S, KEY_I, KEY_O, KEY_N, NULL}; if (is_command_buffer(cmd_reboot_bootloader)) { command_reboot_bootloader(); } else if (is_command_buffer(cmd_version)) { Keyboard.println(""); Keyboard.print("This is Keyboardio Firmware "); Keyboard.println(VERSION); } if (!commandPromptPrinted ) { Keyboard.print(">>> "); commandPromptPrinted = true; commandBufferSize = 0; } } void setup() { wdt_disable(); Serial.begin(115200); //usbMaxPower = 100; Keyboard.begin(); Mouse.begin(); setup_leds(); led_bootup(); setup_command_mode(); setup_matrix(); setup_pins(); rightsx1509.fetchPinStates(); temporary_keymap = primary_keymap = load_primary_keymap(); } String myApp; void loop() { // if(Serial.available()) { // myApp = Serial.readString(); // myApp.trim(); // } TS("A noop takes...") TS("about to scan the matrix") scan_matrix(); TS("updating LEDs"); update_leds(temporary_keymap == NUMPAD_KEYMAP); } void save_primary_keymap(byte keymap) { EEPROM.write(EEPROM_KEYMAP_LOCATION, keymap); } byte load_primary_keymap() { byte keymap = EEPROM.read(EEPROM_KEYMAP_LOCATION); if (keymap >= KEYMAPS ) { return 0; // undefined positions get saved as 255 } return 0; // return keymap; } // Debugging Reporting // void report_matrix() { #ifdef DEBUG_SERIAL if (reporting_counter++ % 100 == 0 ) { for (byte row = 0; row < ROWS; row++) { for (byte col = 0; col < COLS; col++) { Serial.print(matrixState[row][col], HEX); Serial.print(", "); } Serial.println(""); } Serial.println(""); } #endif } void report(byte row, byte col, boolean value) { #ifdef DEBUG_SERIAL Serial.print("Detected a change on "); Serial.print(col); Serial.print(" "); Serial.print(row); Serial.print(" to "); Serial.print(value); Serial.println("."); #endif } // // Key Reports // void release_keys_not_being_pressed() { // we use charsReportedLastTime to figure out what we might // not be holding anymore and can now release. this is // destructive to charsReportedLastTime for (byte i = 0; i < KEYS_HELD_BUFFER; i++) { // for each key we were holding as of the end of the last cycle // see if we're still holding it // if we're not, call an explicit Release if (charsReportedLastTime[i] != 0x00) { // if there _was_ a character in this slot, go check the // currently held characters for (byte j = 0; j < KEYS_HELD_BUFFER; j++) { if (charsReportedLastTime[i] == charsBeingReported[j]) { // if's still held, we don't need to do anything. charsReportedLastTime[i] = 0x00; break; } } Keyboard.release(charsReportedLastTime[i]); } } } void record_key_being_pressed(byte character) { for (byte i = 0; i < KEYS_HELD_BUFFER; i++) { // todo - deal with overflowing the 12 key buffer here if (charsBeingReported[i] == 0x00) { charsBeingReported[i] = character; break; } } } void reset_key_report() { memcpy( charsReportedLastTime, charsBeingReported, KEYS_HELD_BUFFER); memset(charsBeingReported, 0, KEYS_HELD_BUFFER); } // Sending events to the usb host void handle_synthetic_key_press(byte switchState, Key mappedKey) { if (mappedKey.flags & IS_CONSUMER) { if (key_toggled_on (switchState)) { ConsumerControl.press(mappedKey.rawKey); } } else if (mappedKey.flags & IS_INTERNAL) { if (key_toggled_on (switchState)) { if (mappedKey.rawKey == LED_TOGGLE) { next_led_mode(); } } } else if (mappedKey.flags & IS_SYSCTL) { if (key_toggled_on (switchState)) { SystemControl.press(mappedKey.rawKey); } } else if (mappedKey.flags & IS_MACRO) { if (key_toggled_on (switchState)) { if (mappedKey.rawKey == 1) { Serial.print("Keyboard.IO keyboard driver v0.00"); } } } else if (mappedKey.rawKey == KEY_MOUSE_BTN_L || mappedKey.rawKey == KEY_MOUSE_BTN_M || mappedKey.rawKey == KEY_MOUSE_BTN_R) { if (key_toggled_on (switchState)) { Mouse.press(mappedKey.rawKey); end_warping(); } else if (key_is_pressed(switchState)) { } else if (Mouse.isPressed(mappedKey.rawKey) ) { Mouse.release(mappedKey.rawKey); } } } void send_key_event(byte row, byte col) { //for every newly pressed button, figure out what logical key it is and send a key down event // for every newly released button, figure out what logical key it is and send a key up event // TODO:switch to sending raw HID packets // really, these are signed small ints byte switchState = matrixState[row][col]; Key mappedKey = keymaps[temporary_keymap][row][col]; set_keymap(keymaps[primary_keymap][row][col], switchState); if (mappedKey.flags & MOUSE_KEY ) { if (mappedKey.rawKey & MOUSE_WARP) { if (key_toggled_on(switchState)) { warp_mouse(mappedKey); } } else { handle_mouse_key_press(switchState, mappedKey, x, y); } } else if (mappedKey.flags & SYNTHETIC_KEY) { handle_synthetic_key_press(switchState, mappedKey); } else { if (key_is_pressed(switchState)) { record_key_being_pressed(mappedKey.rawKey); if (key_toggled_on (switchState)) { press_key(mappedKey); } } else if (key_toggled_off (switchState)) { release_key(mappedKey); } } } void press_key(Key mappedKey) { if (mappedKey.flags & SHIFT_HELD) { Keyboard.press(Key_LShift.rawKey); } Keyboard.press(mappedKey.rawKey); if (commandBufferSize >= 31) { commandBufferSize = 0; } commandBuffer[commandBufferSize++] = mappedKey.rawKey; if ( mappedKey.rawKey == KEY_ENTER || mappedKey.rawKey == KEY_RETURN ) { commandPromptPrinted = false; process_command_buffer(); commandBufferSize = 0; } } void release_key(Key mappedKey) { if (mappedKey.flags & SHIFT_HELD) { Keyboard.release(Key_LShift.rawKey); } Keyboard.release(mappedKey.rawKey); } void make_input(sx1509Class sx1509, int pin) { sx1509.pinDir(pin, INPUT); // Set SX1509 pin 1 as an input sx1509.writePin(pin, HIGH); // Activate pull-up } void make_output(sx1509Class sx1509, int pin) { sx1509.pinDir(pin, OUTPUT); sx1509.writePin(pin, HIGH); } void setup_pins() { right_initted = setup_sx1509(rightsx1509, right_colpins, right_rowpins); left_initted = setup_sx1509(leftsx1509, left_colpins, left_rowpins); } int setup_sx1509 (sx1509Class sx1509, int colpins[], int rowpins[]) { byte initted; for (int counter = 0; counter < 10; counter++) { initted = sx1509.init(); if (initted) break; } if (initted) { // init ok // In order to use the keypad, the clock must first be // configured. We can call configureClock() with the default // parameters (2MHz internal oscillator, no clock in/out). sx1509.configClock(); // the debounceConfig function sets the debounce time. This // function's parameter should be a 3-bit value. // 0: 0.5ms * 2MHz/fOSC // 1: 1ms * 2MHz/fOSC // 2: 2ms * 2MHz/fOSC // 3: 4ms * 2MHz/fOSC // 4: 8ms * 2MHz/fOSC // 5: 16ms * 2MHz/fOSC // 6: 32ms * 2MHz/fOSC // 7: 64ms * 2MHz/fOSC sx1509.debounceConfig(4); // maximum debuonce time for (int i = 0; i < LEFT_ROWS; i++) { make_output(sx1509, rowpins[i]); } for (int j = 0; j < LEFT_COLS; j++) { make_input(sx1509, colpins[j]); sx1509.debounceEnable(colpins[j]); } } return initted; }