// Do not remove the include below #include "ArduinoKeyboard.h" // Copyright 2013 Jesse Vincent // All Rights Reserved. (To be licensed under an opensource license // before the release of the keyboard.io model 01 /** * TODO: add mouse acceleration/deceleration add mouse inertia add series-of-character macros add series of keystroke macros use a lower-level USB API * **/ #include #include #include "KeyboardConfig.h" #include "keymaps_generated.h" #include // Don't need this for CLI compilation, but do need it in the IDE #include "KeyboardEEPROM.h" #include "KeyboardMouse.h" #include "KeyboardDebugging.h" //extern int usbMaxPower; byte matrixState[ROWS][COLS]; byte charsBeingReported[KEYS_HELD_BUFFER]; // A bit vector for the 256 keys we might conceivably be holding down byte charsReportedLastTime[KEYS_HELD_BUFFER]; // A bit vector for the 256 keys we might conceivably be holding down long reporting_counter = 0; byte current_layer = 0; byte active_layer = 0; double mouseActiveForCycles = 0; float carriedOverX = 0; float carriedOverY = 0; void release_keys_not_being_pressed() { // we use charsReportedLastTime to figure out what we might not be holding anymore and can now release. this is destructive to charsReportedLastTime for (byte i = 0; i < KEYS_HELD_BUFFER; i++) { // for each key we were holding as of the end of the last cycle // see if we're still holding it // if we're not, call an explicit Release if (charsReportedLastTime[i] != 0x00) { // if there _was_ a character in this slot, go check the // currently held characters for (byte j = 0; j < KEYS_HELD_BUFFER; j++) { if (charsReportedLastTime[i] == charsBeingReported[j]) { // if's still held, we don't need to do anything. charsReportedLastTime[i] = 0x00; break; } } } } for (byte i = 0; i < KEYS_HELD_BUFFER; i++) { if (charsReportedLastTime[i] != 0x00) { Keyboard.release(charsReportedLastTime[i]); } } } void record_key_being_pressed(byte character) { for (byte i = 0; i < KEYS_HELD_BUFFER; i++) { // todo - deal with overflowing the 12 key buffer here if (charsBeingReported[i] == 0x00) { charsBeingReported[i] = character; break; } } } void reset_matrix() { for (byte col = 0; col < COLS; col++) { for (byte row = 0; row < ROWS; row++) { matrixState[row][col] <<= 1; } } for (byte i = 0; i < KEYS_HELD_BUFFER; i++) { charsReportedLastTime[i] = charsBeingReported[i]; charsBeingReported[i] = 0x00; } } void handle_synthetic_key_press(byte switchState, Key mappedKey) { if (mappedKey.flags & IS_CONSUMER) { if (key_toggled_on (switchState)) { Keyboard.consumerControl(mappedKey.rawKey); } } else if (mappedKey.flags & IS_SYSCTL) { if (key_toggled_on (switchState)) { Keyboard.systemControl(mappedKey.rawKey); } } else if (mappedKey.flags & IS_MACRO) { if (key_toggled_on (switchState)) { if (mappedKey.rawKey == 1) { Keyboard.print("Keyboard.IO keyboard driver v0.00"); } } } else if (mappedKey.rawKey == KEY_MOUSE_BTN_L || mappedKey.rawKey == KEY_MOUSE_BTN_M || mappedKey.rawKey == KEY_MOUSE_BTN_R) { if (key_toggled_on (switchState)) { Mouse.press(mappedKey.rawKey); } else if (key_is_pressed(switchState)) { } else if (Mouse.isPressed(mappedKey.rawKey) ) { Mouse.release(mappedKey.rawKey); } } } void handle_mouse_key_press(byte switchState, Key mappedKey, char &x, char &y) { if (key_is_pressed(switchState)) { if (mappedKey.rawKey & MOUSE_UP) { y -= 1; } if (mappedKey.rawKey & MOUSE_DN) { y += 1; } if (mappedKey.rawKey & MOUSE_L) { x -= 1; } if (mappedKey.rawKey & MOUSE_R) { x += 1 ; } } } void send_key_events(byte layer) { //for every newly pressed button, figure out what logical key it is and send a key down event // for every newly released button, figure out what logical key it is and send a key up event // TODO:switch to sending raw HID packets // really, these are signed small ints char x = 0; char y = 0; for (byte row = 0; row < ROWS; row++) { for (byte col = 0; col < COLS; col++) { byte switchState = matrixState[row][col]; Key mappedKey = keymaps[layer][row][col]; if (mappedKey.flags & MOUSE_KEY ) { handle_mouse_key_press(matrixState[row][col], keymaps[layer][row][col], x, y); } else if (mappedKey.flags & SYNTHETIC_KEY) { handle_synthetic_key_press(matrixState[row][col], keymaps[layer][row][col]); } else { if (key_is_pressed(switchState)) { record_key_being_pressed(mappedKey.rawKey); if (key_toggled_on (switchState)) { Keyboard.press(mappedKey.rawKey); } } else if (key_toggled_off (switchState)) { Keyboard.release(mappedKey.rawKey); } } } } handle_mouse_movement(x, y); release_keys_not_being_pressed(); } void setup_pins() { //set up the row pins as outputs for (byte row = 0; row < ROWS; row++) { pinMode(rowPins[row], OUTPUT); digitalWrite(rowPins[row], HIGH); } for (byte col = 0; col < COLS; col++) { pinMode(colPins[col], INPUT); digitalWrite(colPins[col], HIGH); //drive em high by default s it seems to be more reliable than driving em low } } void setup_matrix() { //blank out the matrix. for (byte col = 0; col < COLS; col++) { for (byte row = 0; row < ROWS; row++) { matrixState[row][col] = 0; } } } void set_keymap_layer(Key keymapEntry, byte matrixStateEntry) { if (keymapEntry.flags & SWITCH_TO_LAYER) { // this logic sucks. there is a better way TODO this if (! (keymapEntry.flags ^ ( MOMENTARY | SWITCH_TO_LAYER))) { if (key_is_pressed(matrixStateEntry)) { if ( keymapEntry.rawKey == LAYER_NEXT) { active_layer++; } else if ( keymapEntry.rawKey == LAYER_PREVIOUS) { active_layer--; } else { active_layer = keymapEntry.rawKey; } } } else if (! (keymapEntry.flags ^ ( SWITCH_TO_LAYER))) { // switch layer and stay there if (key_toggled_on(matrixStateEntry)) { current_layer = active_layer = keymapEntry.rawKey; save_current_layer(current_layer); } } } } void handle_immediate_action_during_matrix_scan(Key keymapEntry, byte matrixStateEntry) { set_keymap_layer(keymapEntry, matrixStateEntry); } void scan_matrix() { active_layer = current_layer; //scan the Keyboard matrix looking for connections for (byte row = 0; row < ROWS; row++) { digitalWrite(rowPins[row], LOW); for (byte col = 0; col < COLS; col++) { //If we see an electrical connection on I->J, if (digitalRead(colPins[col])) { matrixState[row][col] |= 0; // noop. just here for clarity } else { matrixState[row][col] |= 1; // noop. just here for clarity } // while we're inspecting the electrical matrix, we look // to see if the Key being held is a firmware level // metakey, so we can act on it, lest we only discover // that we should be looking at a seconary Keymap halfway through the matrix scan handle_immediate_action_during_matrix_scan(keymaps[active_layer][row][col], matrixState[row][col]); } digitalWrite(rowPins[row], HIGH); } } void setup() { //usbMaxPower = 100; Serial.begin(115200); Keyboard.begin(); Mouse.begin(); //#ifdef DEBUG_SERIAL //#endif setup_matrix(); setup_pins(); Serial.println("loaded the matrix"); current_layer = load_current_layer(); active_layer = current_layer; } void loop() { scan_matrix(); send_key_events(active_layer); reset_matrix(); } // switch debouncing and status // // boolean key_was_pressed (byte keyState) { if ( byte((keyState >> 4)) ^ B00001111 ) { return false; } else { return true; } } boolean key_was_not_pressed (byte keyState) { if ( byte((keyState >> 4)) ^ B00000000 ) { return false; } else { return true; } } boolean key_is_pressed (byte keyState) { if ( byte((keyState << 4)) ^ B11110000 ) { return false; } else { return true; } } boolean key_is_not_pressed (byte keyState) { if ( byte((keyState << 4)) ^ B00000000 ) { return false; } else { return true; } } boolean key_toggled_on(byte keyState) { if (key_is_pressed(keyState) && key_was_not_pressed(keyState)) { return true; } else { return false; } } boolean key_toggled_off(byte keyState) { if (key_was_pressed(keyState) && key_is_not_pressed(keyState)) { return true; } else { return false; } } void save_current_layer(byte layer) { EEPROM.write(EEPROM_LAYER_LOCATION, layer); } byte load_current_layer() { byte layer = EEPROM.read(EEPROM_LAYER_LOCATION); if (layer >= LAYERS ) { return 0; // undefined positions get saved as 255 } return layer; } // Debugging Reporting // void report_matrix() { #ifdef DEBUG_SERIAL if (reporting_counter++ % 100 == 0 ) { for (byte row = 0; row < ROWS; row++) { for (byte col = 0; col < COLS; col++) { Serial.print(matrixState[row][col], HEX); Serial.print(", "); } Serial.println(""); } Serial.println(""); } #endif } void report(byte row, byte col, boolean value) { #ifdef DEBUG_SERIAL Serial.print("Detected a change on "); Serial.print(col); Serial.print(" "); Serial.print(row); Serial.print(" to "); Serial.print(value); Serial.println("."); #endif } // Mouse-related methods // // double mouse_accel (double cycles) { double accel = atan((cycles / 50) - 5); accel += 1.5707963267944; // we want the whole s curve, not just the bit that's usually above the x and y axes; accel = accel * 0.85; if (accel < 0.25) { accel = 0.25; } return accel; } void handle_mouse_movement( char x, char y) { if (x != 0 || y != 0) { mouseActiveForCycles++; double accel = (double) mouse_accel(mouseActiveForCycles); float moveX = 0; float moveY = 0; if (x > 0) { moveX = (x * accel) + carriedOverX; carriedOverX = moveX - floor(moveX); } else if (x < 0) { moveX = (x * accel) - carriedOverX; carriedOverX = ceil(moveX) - moveX; } if (y > 0) { moveY = (y * accel) + carriedOverY; carriedOverY = moveY - floor(moveY); } else if (y < 0) { moveY = (y * accel) - carriedOverY; carriedOverY = ceil(moveY) - moveY; } #ifdef DEBUG_SERIAL Serial.println(); Serial.print("cycles: "); Serial.println(mouseActiveForCycles); Serial.print("Accel: "); Serial.print(accel); Serial.print(" moveX is "); Serial.print(moveX); Serial.print(" moveY is "); Serial.print(moveY); Serial.print(" carriedoverx is "); Serial.print(carriedOverX); Serial.print(" carriedOverY is "); Serial.println(carriedOverY); #endif Mouse.move(moveX, moveY, 0); } else { mouseActiveForCycles = 0; } }