// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file tests the built-in actions in gmock-actions.h. #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable : 4577) #endif #include "gmock/gmock-more-actions.h" #include <functional> #include <memory> #include <sstream> #include <string> #include "gmock/gmock.h" #include "gtest/gtest-spi.h" #include "gtest/gtest.h" namespace testing { namespace gmock_more_actions_test { using ::std::plus; using ::std::string; using testing::Action; using testing::DeleteArg; using testing::Invoke; using testing::ReturnArg; using testing::ReturnPointee; using testing::SaveArg; using testing::SaveArgPointee; using testing::SetArgReferee; using testing::Unused; using testing::WithArg; using testing::WithoutArgs; // For suppressing compiler warnings on conversion possibly losing precision. inline short Short(short n) { return n; } // NOLINT inline char Char(char ch) { return ch; } // Sample functions and functors for testing Invoke() and etc. int Nullary() { return 1; } bool g_done = false; bool Unary(int x) { return x < 0; } bool ByConstRef(const std::string& s) { return s == "Hi"; } const double g_double = 0; bool ReferencesGlobalDouble(const double& x) { return &x == &g_double; } struct UnaryFunctor { int operator()(bool x) { return x ? 1 : -1; } }; const char* Binary(const char* input, short n) { return input + n; } // NOLINT int Ternary(int x, char y, short z) { return x + y + z; } // NOLINT int SumOf4(int a, int b, int c, int d) { return a + b + c + d; } int SumOfFirst2(int a, int b, Unused, Unused) { return a + b; } int SumOf5(int a, int b, int c, int d, int e) { return a + b + c + d + e; } struct SumOf5Functor { int operator()(int a, int b, int c, int d, int e) { return a + b + c + d + e; } }; int SumOf6(int a, int b, int c, int d, int e, int f) { return a + b + c + d + e + f; } struct SumOf6Functor { int operator()(int a, int b, int c, int d, int e, int f) { return a + b + c + d + e + f; } }; std::string Concat7(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6, const char* s7) { return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7; } std::string Concat8(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6, const char* s7, const char* s8) { return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8; } std::string Concat9(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6, const char* s7, const char* s8, const char* s9) { return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9; } std::string Concat10(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6, const char* s7, const char* s8, const char* s9, const char* s10) { return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 + s10; } class Foo { public: Foo() : value_(123) {} int Nullary() const { return value_; } short Unary(long x) { return static_cast<short>(value_ + x); } // NOLINT std::string Binary(const std::string& str, char c) const { return str + c; } int Ternary(int x, bool y, char z) { return value_ + x + y*z; } int SumOf4(int a, int b, int c, int d) const { return a + b + c + d + value_; } int SumOfLast2(Unused, Unused, int a, int b) const { return a + b; } int SumOf5(int a, int b, int c, int d, int e) { return a + b + c + d + e; } int SumOf6(int a, int b, int c, int d, int e, int f) { return a + b + c + d + e + f; } std::string Concat7(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6, const char* s7) { return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7; } std::string Concat8(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6, const char* s7, const char* s8) { return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8; } std::string Concat9(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6, const char* s7, const char* s8, const char* s9) { return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9; } std::string Concat10(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6, const char* s7, const char* s8, const char* s9, const char* s10) { return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 + s10; } private: int value_; }; // Tests using Invoke() with a nullary function. TEST(InvokeTest, Nullary) { Action<int()> a = Invoke(Nullary); // NOLINT EXPECT_EQ(1, a.Perform(std::make_tuple())); } // Tests using Invoke() with a unary function. TEST(InvokeTest, Unary) { Action<bool(int)> a = Invoke(Unary); // NOLINT EXPECT_FALSE(a.Perform(std::make_tuple(1))); EXPECT_TRUE(a.Perform(std::make_tuple(-1))); } // Tests using Invoke() with a binary function. TEST(InvokeTest, Binary) { Action<const char*(const char*, short)> a = Invoke(Binary); // NOLINT const char* p = "Hello"; EXPECT_EQ(p + 2, a.Perform(std::make_tuple(p, Short(2)))); } // Tests using Invoke() with a ternary function. TEST(InvokeTest, Ternary) { Action<int(int, char, short)> a = Invoke(Ternary); // NOLINT EXPECT_EQ(6, a.Perform(std::make_tuple(1, '\2', Short(3)))); } // Tests using Invoke() with a 4-argument function. TEST(InvokeTest, FunctionThatTakes4Arguments) { Action<int(int, int, int, int)> a = Invoke(SumOf4); // NOLINT EXPECT_EQ(1234, a.Perform(std::make_tuple(1000, 200, 30, 4))); } // Tests using Invoke() with a 5-argument function. TEST(InvokeTest, FunctionThatTakes5Arguments) { Action<int(int, int, int, int, int)> a = Invoke(SumOf5); // NOLINT EXPECT_EQ(12345, a.Perform(std::make_tuple(10000, 2000, 300, 40, 5))); } // Tests using Invoke() with a 6-argument function. TEST(InvokeTest, FunctionThatTakes6Arguments) { Action<int(int, int, int, int, int, int)> a = Invoke(SumOf6); // NOLINT EXPECT_EQ(123456, a.Perform(std::make_tuple(100000, 20000, 3000, 400, 50, 6))); } // A helper that turns the type of a C-string literal from const // char[N] to const char*. inline const char* CharPtr(const char* s) { return s; } // Tests using Invoke() with a 7-argument function. TEST(InvokeTest, FunctionThatTakes7Arguments) { Action<std::string(const char*, const char*, const char*, const char*, const char*, const char*, const char*)> a = Invoke(Concat7); EXPECT_EQ("1234567", a.Perform(std::make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"), CharPtr("4"), CharPtr("5"), CharPtr("6"), CharPtr("7")))); } // Tests using Invoke() with a 8-argument function. TEST(InvokeTest, FunctionThatTakes8Arguments) { Action<std::string(const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*)> a = Invoke(Concat8); EXPECT_EQ("12345678", a.Perform(std::make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"), CharPtr("4"), CharPtr("5"), CharPtr("6"), CharPtr("7"), CharPtr("8")))); } // Tests using Invoke() with a 9-argument function. TEST(InvokeTest, FunctionThatTakes9Arguments) { Action<std::string(const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*)> a = Invoke(Concat9); EXPECT_EQ("123456789", a.Perform(std::make_tuple( CharPtr("1"), CharPtr("2"), CharPtr("3"), CharPtr("4"), CharPtr("5"), CharPtr("6"), CharPtr("7"), CharPtr("8"), CharPtr("9")))); } // Tests using Invoke() with a 10-argument function. TEST(InvokeTest, FunctionThatTakes10Arguments) { Action<std::string(const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*)> a = Invoke(Concat10); EXPECT_EQ("1234567890", a.Perform(std::make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"), CharPtr("4"), CharPtr("5"), CharPtr("6"), CharPtr("7"), CharPtr("8"), CharPtr("9"), CharPtr("0")))); } // Tests using Invoke() with functions with parameters declared as Unused. TEST(InvokeTest, FunctionWithUnusedParameters) { Action<int(int, int, double, const std::string&)> a1 = Invoke(SumOfFirst2); std::tuple<int, int, double, std::string> dummy = std::make_tuple(10, 2, 5.6, std::string("hi")); EXPECT_EQ(12, a1.Perform(dummy)); Action<int(int, int, bool, int*)> a2 = Invoke(SumOfFirst2); EXPECT_EQ( 23, a2.Perform(std::make_tuple(20, 3, true, static_cast<int*>(nullptr)))); } // Tests using Invoke() with methods with parameters declared as Unused. TEST(InvokeTest, MethodWithUnusedParameters) { Foo foo; Action<int(std::string, bool, int, int)> a1 = Invoke(&foo, &Foo::SumOfLast2); EXPECT_EQ(12, a1.Perform(std::make_tuple(CharPtr("hi"), true, 10, 2))); Action<int(char, double, int, int)> a2 = Invoke(&foo, &Foo::SumOfLast2); EXPECT_EQ(23, a2.Perform(std::make_tuple('a', 2.5, 20, 3))); } // Tests using Invoke() with a functor. TEST(InvokeTest, Functor) { Action<long(long, int)> a = Invoke(plus<long>()); // NOLINT EXPECT_EQ(3L, a.Perform(std::make_tuple(1, 2))); } // Tests using Invoke(f) as an action of a compatible type. TEST(InvokeTest, FunctionWithCompatibleType) { Action<long(int, short, char, bool)> a = Invoke(SumOf4); // NOLINT EXPECT_EQ(4321, a.Perform(std::make_tuple(4000, Short(300), Char(20), true))); } // Tests using Invoke() with an object pointer and a method pointer. // Tests using Invoke() with a nullary method. TEST(InvokeMethodTest, Nullary) { Foo foo; Action<int()> a = Invoke(&foo, &Foo::Nullary); // NOLINT EXPECT_EQ(123, a.Perform(std::make_tuple())); } // Tests using Invoke() with a unary method. TEST(InvokeMethodTest, Unary) { Foo foo; Action<short(long)> a = Invoke(&foo, &Foo::Unary); // NOLINT EXPECT_EQ(4123, a.Perform(std::make_tuple(4000))); } // Tests using Invoke() with a binary method. TEST(InvokeMethodTest, Binary) { Foo foo; Action<std::string(const std::string&, char)> a = Invoke(&foo, &Foo::Binary); std::string s("Hell"); std::tuple<std::string, char> dummy = std::make_tuple(s, 'o'); EXPECT_EQ("Hello", a.Perform(dummy)); } // Tests using Invoke() with a ternary method. TEST(InvokeMethodTest, Ternary) { Foo foo; Action<int(int, bool, char)> a = Invoke(&foo, &Foo::Ternary); // NOLINT EXPECT_EQ(1124, a.Perform(std::make_tuple(1000, true, Char(1)))); } // Tests using Invoke() with a 4-argument method. TEST(InvokeMethodTest, MethodThatTakes4Arguments) { Foo foo; Action<int(int, int, int, int)> a = Invoke(&foo, &Foo::SumOf4); // NOLINT EXPECT_EQ(1357, a.Perform(std::make_tuple(1000, 200, 30, 4))); } // Tests using Invoke() with a 5-argument method. TEST(InvokeMethodTest, MethodThatTakes5Arguments) { Foo foo; Action<int(int, int, int, int, int)> a = Invoke(&foo, &Foo::SumOf5); // NOLINT EXPECT_EQ(12345, a.Perform(std::make_tuple(10000, 2000, 300, 40, 5))); } // Tests using Invoke() with a 6-argument method. TEST(InvokeMethodTest, MethodThatTakes6Arguments) { Foo foo; Action<int(int, int, int, int, int, int)> a = // NOLINT Invoke(&foo, &Foo::SumOf6); EXPECT_EQ(123456, a.Perform(std::make_tuple(100000, 20000, 3000, 400, 50, 6))); } // Tests using Invoke() with a 7-argument method. TEST(InvokeMethodTest, MethodThatTakes7Arguments) { Foo foo; Action<std::string(const char*, const char*, const char*, const char*, const char*, const char*, const char*)> a = Invoke(&foo, &Foo::Concat7); EXPECT_EQ("1234567", a.Perform(std::make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"), CharPtr("4"), CharPtr("5"), CharPtr("6"), CharPtr("7")))); } // Tests using Invoke() with a 8-argument method. TEST(InvokeMethodTest, MethodThatTakes8Arguments) { Foo foo; Action<std::string(const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*)> a = Invoke(&foo, &Foo::Concat8); EXPECT_EQ("12345678", a.Perform(std::make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"), CharPtr("4"), CharPtr("5"), CharPtr("6"), CharPtr("7"), CharPtr("8")))); } // Tests using Invoke() with a 9-argument method. TEST(InvokeMethodTest, MethodThatTakes9Arguments) { Foo foo; Action<std::string(const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*)> a = Invoke(&foo, &Foo::Concat9); EXPECT_EQ("123456789", a.Perform(std::make_tuple( CharPtr("1"), CharPtr("2"), CharPtr("3"), CharPtr("4"), CharPtr("5"), CharPtr("6"), CharPtr("7"), CharPtr("8"), CharPtr("9")))); } // Tests using Invoke() with a 10-argument method. TEST(InvokeMethodTest, MethodThatTakes10Arguments) { Foo foo; Action<std::string(const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*)> a = Invoke(&foo, &Foo::Concat10); EXPECT_EQ("1234567890", a.Perform(std::make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"), CharPtr("4"), CharPtr("5"), CharPtr("6"), CharPtr("7"), CharPtr("8"), CharPtr("9"), CharPtr("0")))); } // Tests using Invoke(f) as an action of a compatible type. TEST(InvokeMethodTest, MethodWithCompatibleType) { Foo foo; Action<long(int, short, char, bool)> a = // NOLINT Invoke(&foo, &Foo::SumOf4); EXPECT_EQ(4444, a.Perform(std::make_tuple(4000, Short(300), Char(20), true))); } // Tests using WithoutArgs with an action that takes no argument. TEST(WithoutArgsTest, NoArg) { Action<int(int n)> a = WithoutArgs(Invoke(Nullary)); // NOLINT EXPECT_EQ(1, a.Perform(std::make_tuple(2))); } // Tests using WithArg with an action that takes 1 argument. TEST(WithArgTest, OneArg) { Action<bool(double x, int n)> b = WithArg<1>(Invoke(Unary)); // NOLINT EXPECT_TRUE(b.Perform(std::make_tuple(1.5, -1))); EXPECT_FALSE(b.Perform(std::make_tuple(1.5, 1))); } TEST(ReturnArgActionTest, WorksForOneArgIntArg0) { const Action<int(int)> a = ReturnArg<0>(); EXPECT_EQ(5, a.Perform(std::make_tuple(5))); } TEST(ReturnArgActionTest, WorksForMultiArgBoolArg0) { const Action<bool(bool, bool, bool)> a = ReturnArg<0>(); EXPECT_TRUE(a.Perform(std::make_tuple(true, false, false))); } TEST(ReturnArgActionTest, WorksForMultiArgStringArg2) { const Action<std::string(int, int, std::string, int)> a = ReturnArg<2>(); EXPECT_EQ("seven", a.Perform(std::make_tuple(5, 6, std::string("seven"), 8))); } TEST(SaveArgActionTest, WorksForSameType) { int result = 0; const Action<void(int n)> a1 = SaveArg<0>(&result); a1.Perform(std::make_tuple(5)); EXPECT_EQ(5, result); } TEST(SaveArgActionTest, WorksForCompatibleType) { int result = 0; const Action<void(bool, char)> a1 = SaveArg<1>(&result); a1.Perform(std::make_tuple(true, 'a')); EXPECT_EQ('a', result); } TEST(SaveArgPointeeActionTest, WorksForSameType) { int result = 0; const int value = 5; const Action<void(const int*)> a1 = SaveArgPointee<0>(&result); a1.Perform(std::make_tuple(&value)); EXPECT_EQ(5, result); } TEST(SaveArgPointeeActionTest, WorksForCompatibleType) { int result = 0; char value = 'a'; const Action<void(bool, char*)> a1 = SaveArgPointee<1>(&result); a1.Perform(std::make_tuple(true, &value)); EXPECT_EQ('a', result); } TEST(SetArgRefereeActionTest, WorksForSameType) { int value = 0; const Action<void(int&)> a1 = SetArgReferee<0>(1); a1.Perform(std::tuple<int&>(value)); EXPECT_EQ(1, value); } TEST(SetArgRefereeActionTest, WorksForCompatibleType) { int value = 0; const Action<void(int, int&)> a1 = SetArgReferee<1>('a'); a1.Perform(std::tuple<int, int&>(0, value)); EXPECT_EQ('a', value); } TEST(SetArgRefereeActionTest, WorksWithExtraArguments) { int value = 0; const Action<void(bool, int, int&, const char*)> a1 = SetArgReferee<2>('a'); a1.Perform(std::tuple<bool, int, int&, const char*>(true, 0, value, "hi")); EXPECT_EQ('a', value); } // A class that can be used to verify that its destructor is called: it will set // the bool provided to the constructor to true when destroyed. class DeletionTester { public: explicit DeletionTester(bool* is_deleted) : is_deleted_(is_deleted) { // Make sure the bit is set to false. *is_deleted_ = false; } ~DeletionTester() { *is_deleted_ = true; } private: bool* is_deleted_; }; TEST(DeleteArgActionTest, OneArg) { bool is_deleted = false; DeletionTester* t = new DeletionTester(&is_deleted); const Action<void(DeletionTester*)> a1 = DeleteArg<0>(); // NOLINT EXPECT_FALSE(is_deleted); a1.Perform(std::make_tuple(t)); EXPECT_TRUE(is_deleted); } TEST(DeleteArgActionTest, TenArgs) { bool is_deleted = false; DeletionTester* t = new DeletionTester(&is_deleted); const Action<void(bool, int, int, const char*, bool, int, int, int, int, DeletionTester*)> a1 = DeleteArg<9>(); EXPECT_FALSE(is_deleted); a1.Perform(std::make_tuple(true, 5, 6, CharPtr("hi"), false, 7, 8, 9, 10, t)); EXPECT_TRUE(is_deleted); } #if GTEST_HAS_EXCEPTIONS TEST(ThrowActionTest, ThrowsGivenExceptionInVoidFunction) { const Action<void(int n)> a = Throw('a'); EXPECT_THROW(a.Perform(std::make_tuple(0)), char); } class MyException {}; TEST(ThrowActionTest, ThrowsGivenExceptionInNonVoidFunction) { const Action<double(char ch)> a = Throw(MyException()); EXPECT_THROW(a.Perform(std::make_tuple('0')), MyException); } TEST(ThrowActionTest, ThrowsGivenExceptionInNullaryFunction) { const Action<double()> a = Throw(MyException()); EXPECT_THROW(a.Perform(std::make_tuple()), MyException); } class Object { public: virtual ~Object() {} virtual void Func() {} }; class MockObject : public Object { public: ~MockObject() override {} MOCK_METHOD(void, Func, (), (override)); }; TEST(ThrowActionTest, Times0) { EXPECT_NONFATAL_FAILURE( [] { try { MockObject m; ON_CALL(m, Func()).WillByDefault([] { throw "something"; }); EXPECT_CALL(m, Func()).Times(0); m.Func(); } catch (...) { // Exception is caught but Times(0) still triggers a failure. } }(), ""); } #endif // GTEST_HAS_EXCEPTIONS // Tests that SetArrayArgument<N>(first, last) sets the elements of the array // pointed to by the N-th (0-based) argument to values in range [first, last). TEST(SetArrayArgumentTest, SetsTheNthArray) { using MyFunction = void(bool, int*, char*); int numbers[] = { 1, 2, 3 }; Action<MyFunction> a = SetArrayArgument<1>(numbers, numbers + 3); int n[4] = {}; int* pn = n; char ch[4] = {}; char* pch = ch; a.Perform(std::make_tuple(true, pn, pch)); EXPECT_EQ(1, n[0]); EXPECT_EQ(2, n[1]); EXPECT_EQ(3, n[2]); EXPECT_EQ(0, n[3]); EXPECT_EQ('\0', ch[0]); EXPECT_EQ('\0', ch[1]); EXPECT_EQ('\0', ch[2]); EXPECT_EQ('\0', ch[3]); // Tests first and last are iterators. std::string letters = "abc"; a = SetArrayArgument<2>(letters.begin(), letters.end()); std::fill_n(n, 4, 0); std::fill_n(ch, 4, '\0'); a.Perform(std::make_tuple(true, pn, pch)); EXPECT_EQ(0, n[0]); EXPECT_EQ(0, n[1]); EXPECT_EQ(0, n[2]); EXPECT_EQ(0, n[3]); EXPECT_EQ('a', ch[0]); EXPECT_EQ('b', ch[1]); EXPECT_EQ('c', ch[2]); EXPECT_EQ('\0', ch[3]); } // Tests SetArrayArgument<N>(first, last) where first == last. TEST(SetArrayArgumentTest, SetsTheNthArrayWithEmptyRange) { using MyFunction = void(bool, int*); int numbers[] = { 1, 2, 3 }; Action<MyFunction> a = SetArrayArgument<1>(numbers, numbers); int n[4] = {}; int* pn = n; a.Perform(std::make_tuple(true, pn)); EXPECT_EQ(0, n[0]); EXPECT_EQ(0, n[1]); EXPECT_EQ(0, n[2]); EXPECT_EQ(0, n[3]); } // Tests SetArrayArgument<N>(first, last) where *first is convertible // (but not equal) to the argument type. TEST(SetArrayArgumentTest, SetsTheNthArrayWithConvertibleType) { using MyFunction = void(bool, int*); char chars[] = { 97, 98, 99 }; Action<MyFunction> a = SetArrayArgument<1>(chars, chars + 3); int codes[4] = { 111, 222, 333, 444 }; int* pcodes = codes; a.Perform(std::make_tuple(true, pcodes)); EXPECT_EQ(97, codes[0]); EXPECT_EQ(98, codes[1]); EXPECT_EQ(99, codes[2]); EXPECT_EQ(444, codes[3]); } // Test SetArrayArgument<N>(first, last) with iterator as argument. TEST(SetArrayArgumentTest, SetsTheNthArrayWithIteratorArgument) { using MyFunction = void(bool, std::back_insert_iterator<std::string>); std::string letters = "abc"; Action<MyFunction> a = SetArrayArgument<1>(letters.begin(), letters.end()); std::string s; a.Perform(std::make_tuple(true, back_inserter(s))); EXPECT_EQ(letters, s); } TEST(ReturnPointeeTest, Works) { int n = 42; const Action<int()> a = ReturnPointee(&n); EXPECT_EQ(42, a.Perform(std::make_tuple())); n = 43; EXPECT_EQ(43, a.Perform(std::make_tuple())); } // Tests InvokeArgument<N>(...). // Tests using InvokeArgument with a nullary function. TEST(InvokeArgumentTest, Function0) { Action<int(int, int (*)())> a = InvokeArgument<1>(); // NOLINT EXPECT_EQ(1, a.Perform(std::make_tuple(2, &Nullary))); } // Tests using InvokeArgument with a unary function. TEST(InvokeArgumentTest, Functor1) { Action<int(UnaryFunctor)> a = InvokeArgument<0>(true); // NOLINT EXPECT_EQ(1, a.Perform(std::make_tuple(UnaryFunctor()))); } // Tests using InvokeArgument with a 5-ary function. TEST(InvokeArgumentTest, Function5) { Action<int(int (*)(int, int, int, int, int))> a = // NOLINT InvokeArgument<0>(10000, 2000, 300, 40, 5); EXPECT_EQ(12345, a.Perform(std::make_tuple(&SumOf5))); } // Tests using InvokeArgument with a 5-ary functor. TEST(InvokeArgumentTest, Functor5) { Action<int(SumOf5Functor)> a = // NOLINT InvokeArgument<0>(10000, 2000, 300, 40, 5); EXPECT_EQ(12345, a.Perform(std::make_tuple(SumOf5Functor()))); } // Tests using InvokeArgument with a 6-ary function. TEST(InvokeArgumentTest, Function6) { Action<int(int (*)(int, int, int, int, int, int))> a = // NOLINT InvokeArgument<0>(100000, 20000, 3000, 400, 50, 6); EXPECT_EQ(123456, a.Perform(std::make_tuple(&SumOf6))); } // Tests using InvokeArgument with a 6-ary functor. TEST(InvokeArgumentTest, Functor6) { Action<int(SumOf6Functor)> a = // NOLINT InvokeArgument<0>(100000, 20000, 3000, 400, 50, 6); EXPECT_EQ(123456, a.Perform(std::make_tuple(SumOf6Functor()))); } // Tests using InvokeArgument with a 7-ary function. TEST(InvokeArgumentTest, Function7) { Action<std::string(std::string(*)(const char*, const char*, const char*, const char*, const char*, const char*, const char*))> a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7"); EXPECT_EQ("1234567", a.Perform(std::make_tuple(&Concat7))); } // Tests using InvokeArgument with a 8-ary function. TEST(InvokeArgumentTest, Function8) { Action<std::string(std::string(*)(const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*))> a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8"); EXPECT_EQ("12345678", a.Perform(std::make_tuple(&Concat8))); } // Tests using InvokeArgument with a 9-ary function. TEST(InvokeArgumentTest, Function9) { Action<std::string(std::string(*)(const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*))> a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8", "9"); EXPECT_EQ("123456789", a.Perform(std::make_tuple(&Concat9))); } // Tests using InvokeArgument with a 10-ary function. TEST(InvokeArgumentTest, Function10) { Action<std::string(std::string(*)( const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*, const char*))> a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8", "9", "0"); EXPECT_EQ("1234567890", a.Perform(std::make_tuple(&Concat10))); } // Tests using InvokeArgument with a function that takes a pointer argument. TEST(InvokeArgumentTest, ByPointerFunction) { Action<const char*(const char* (*)(const char* input, short n))> // NOLINT a = InvokeArgument<0>(static_cast<const char*>("Hi"), Short(1)); EXPECT_STREQ("i", a.Perform(std::make_tuple(&Binary))); } // Tests using InvokeArgument with a function that takes a const char* // by passing it a C-string literal. TEST(InvokeArgumentTest, FunctionWithCStringLiteral) { Action<const char*(const char* (*)(const char* input, short n))> // NOLINT a = InvokeArgument<0>("Hi", Short(1)); EXPECT_STREQ("i", a.Perform(std::make_tuple(&Binary))); } // Tests using InvokeArgument with a function that takes a const reference. TEST(InvokeArgumentTest, ByConstReferenceFunction) { Action<bool(bool (*function)(const std::string& s))> a = // NOLINT InvokeArgument<0>(std::string("Hi")); // When action 'a' is constructed, it makes a copy of the temporary // string object passed to it, so it's OK to use 'a' later, when the // temporary object has already died. EXPECT_TRUE(a.Perform(std::make_tuple(&ByConstRef))); } // Tests using InvokeArgument with ByRef() and a function that takes a // const reference. TEST(InvokeArgumentTest, ByExplicitConstReferenceFunction) { Action<bool(bool (*)(const double& x))> a = // NOLINT InvokeArgument<0>(ByRef(g_double)); // The above line calls ByRef() on a const value. EXPECT_TRUE(a.Perform(std::make_tuple(&ReferencesGlobalDouble))); double x = 0; a = InvokeArgument<0>(ByRef(x)); // This calls ByRef() on a non-const. EXPECT_FALSE(a.Perform(std::make_tuple(&ReferencesGlobalDouble))); } // Tests DoAll(a1, a2). TEST(DoAllTest, TwoActions) { int n = 0; Action<int(int*)> a = DoAll(SetArgPointee<0>(1), // NOLINT Return(2)); EXPECT_EQ(2, a.Perform(std::make_tuple(&n))); EXPECT_EQ(1, n); } // Tests DoAll(a1, a2, a3). TEST(DoAllTest, ThreeActions) { int m = 0, n = 0; Action<int(int*, int*)> a = DoAll(SetArgPointee<0>(1), // NOLINT SetArgPointee<1>(2), Return(3)); EXPECT_EQ(3, a.Perform(std::make_tuple(&m, &n))); EXPECT_EQ(1, m); EXPECT_EQ(2, n); } // Tests DoAll(a1, a2, a3, a4). TEST(DoAllTest, FourActions) { int m = 0, n = 0; char ch = '\0'; Action<int(int*, int*, char*)> a = // NOLINT DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2), SetArgPointee<2>('a'), Return(3)); EXPECT_EQ(3, a.Perform(std::make_tuple(&m, &n, &ch))); EXPECT_EQ(1, m); EXPECT_EQ(2, n); EXPECT_EQ('a', ch); } // Tests DoAll(a1, a2, a3, a4, a5). TEST(DoAllTest, FiveActions) { int m = 0, n = 0; char a = '\0', b = '\0'; Action<int(int*, int*, char*, char*)> action = // NOLINT DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2), SetArgPointee<2>('a'), SetArgPointee<3>('b'), Return(3)); EXPECT_EQ(3, action.Perform(std::make_tuple(&m, &n, &a, &b))); EXPECT_EQ(1, m); EXPECT_EQ(2, n); EXPECT_EQ('a', a); EXPECT_EQ('b', b); } // Tests DoAll(a1, a2, ..., a6). TEST(DoAllTest, SixActions) { int m = 0, n = 0; char a = '\0', b = '\0', c = '\0'; Action<int(int*, int*, char*, char*, char*)> action = // NOLINT DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2), SetArgPointee<2>('a'), SetArgPointee<3>('b'), SetArgPointee<4>('c'), Return(3)); EXPECT_EQ(3, action.Perform(std::make_tuple(&m, &n, &a, &b, &c))); EXPECT_EQ(1, m); EXPECT_EQ(2, n); EXPECT_EQ('a', a); EXPECT_EQ('b', b); EXPECT_EQ('c', c); } // Tests DoAll(a1, a2, ..., a7). TEST(DoAllTest, SevenActions) { int m = 0, n = 0; char a = '\0', b = '\0', c = '\0', d = '\0'; Action<int(int*, int*, char*, char*, char*, char*)> action = // NOLINT DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2), SetArgPointee<2>('a'), SetArgPointee<3>('b'), SetArgPointee<4>('c'), SetArgPointee<5>('d'), Return(3)); EXPECT_EQ(3, action.Perform(std::make_tuple(&m, &n, &a, &b, &c, &d))); EXPECT_EQ(1, m); EXPECT_EQ(2, n); EXPECT_EQ('a', a); EXPECT_EQ('b', b); EXPECT_EQ('c', c); EXPECT_EQ('d', d); } // Tests DoAll(a1, a2, ..., a8). TEST(DoAllTest, EightActions) { int m = 0, n = 0; char a = '\0', b = '\0', c = '\0', d = '\0', e = '\0'; Action<int(int*, int*, char*, char*, char*, char*, // NOLINT char*)> action = DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2), SetArgPointee<2>('a'), SetArgPointee<3>('b'), SetArgPointee<4>('c'), SetArgPointee<5>('d'), SetArgPointee<6>('e'), Return(3)); EXPECT_EQ(3, action.Perform(std::make_tuple(&m, &n, &a, &b, &c, &d, &e))); EXPECT_EQ(1, m); EXPECT_EQ(2, n); EXPECT_EQ('a', a); EXPECT_EQ('b', b); EXPECT_EQ('c', c); EXPECT_EQ('d', d); EXPECT_EQ('e', e); } // Tests DoAll(a1, a2, ..., a9). TEST(DoAllTest, NineActions) { int m = 0, n = 0; char a = '\0', b = '\0', c = '\0', d = '\0', e = '\0', f = '\0'; Action<int(int*, int*, char*, char*, char*, char*, // NOLINT char*, char*)> action = DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2), SetArgPointee<2>('a'), SetArgPointee<3>('b'), SetArgPointee<4>('c'), SetArgPointee<5>('d'), SetArgPointee<6>('e'), SetArgPointee<7>('f'), Return(3)); EXPECT_EQ(3, action.Perform(std::make_tuple(&m, &n, &a, &b, &c, &d, &e, &f))); EXPECT_EQ(1, m); EXPECT_EQ(2, n); EXPECT_EQ('a', a); EXPECT_EQ('b', b); EXPECT_EQ('c', c); EXPECT_EQ('d', d); EXPECT_EQ('e', e); EXPECT_EQ('f', f); } // Tests DoAll(a1, a2, ..., a10). TEST(DoAllTest, TenActions) { int m = 0, n = 0; char a = '\0', b = '\0', c = '\0', d = '\0'; char e = '\0', f = '\0', g = '\0'; Action<int(int*, int*, char*, char*, char*, char*, // NOLINT char*, char*, char*)> action = DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2), SetArgPointee<2>('a'), SetArgPointee<3>('b'), SetArgPointee<4>('c'), SetArgPointee<5>('d'), SetArgPointee<6>('e'), SetArgPointee<7>('f'), SetArgPointee<8>('g'), Return(3)); EXPECT_EQ( 3, action.Perform(std::make_tuple(&m, &n, &a, &b, &c, &d, &e, &f, &g))); EXPECT_EQ(1, m); EXPECT_EQ(2, n); EXPECT_EQ('a', a); EXPECT_EQ('b', b); EXPECT_EQ('c', c); EXPECT_EQ('d', d); EXPECT_EQ('e', e); EXPECT_EQ('f', f); EXPECT_EQ('g', g); } TEST(DoAllTest, NoArgs) { bool ran_first = false; Action<bool()> a = DoAll([&] { ran_first = true; }, [&] { return ran_first; }); EXPECT_TRUE(a.Perform({})); } TEST(DoAllTest, MoveOnlyArgs) { bool ran_first = false; Action<int(std::unique_ptr<int>)> a = DoAll(InvokeWithoutArgs([&] { ran_first = true; }), [](std::unique_ptr<int> p) { return *p; }); EXPECT_EQ(7, a.Perform(std::make_tuple(std::unique_ptr<int>(new int(7))))); EXPECT_TRUE(ran_first); } TEST(DoAllTest, ImplicitlyConvertsActionArguments) { bool ran_first = false; // Action<void(std::vector<int>)> isn't an // Action<void(const std::vector<int>&) but can be converted. Action<void(std::vector<int>)> first = [&] { ran_first = true; }; Action<int(std::vector<int>)> a = DoAll(first, [](std::vector<int> arg) { return arg.front(); }); EXPECT_EQ(7, a.Perform(std::make_tuple(std::vector<int>{7}))); EXPECT_TRUE(ran_first); } // The ACTION*() macros trigger warning C4100 (unreferenced formal // parameter) in MSVC with -W4. Unfortunately they cannot be fixed in // the macro definition, as the warnings are generated when the macro // is expanded and macro expansion cannot contain #pragma. Therefore // we suppress them here. // Also suppress C4503 decorated name length exceeded, name was truncated #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable : 4100) #pragma warning(disable : 4503) #endif // Tests the ACTION*() macro family. // Tests that ACTION() can define an action that doesn't reference the // mock function arguments. ACTION(Return5) { return 5; } TEST(ActionMacroTest, WorksWhenNotReferencingArguments) { Action<double()> a1 = Return5(); EXPECT_DOUBLE_EQ(5, a1.Perform(std::make_tuple())); Action<int(double, bool)> a2 = Return5(); EXPECT_EQ(5, a2.Perform(std::make_tuple(1, true))); } // Tests that ACTION() can define an action that returns void. ACTION(IncrementArg1) { (*arg1)++; } TEST(ActionMacroTest, WorksWhenReturningVoid) { Action<void(int, int*)> a1 = IncrementArg1(); int n = 0; a1.Perform(std::make_tuple(5, &n)); EXPECT_EQ(1, n); } // Tests that the body of ACTION() can reference the type of the // argument. ACTION(IncrementArg2) { StaticAssertTypeEq<int*, arg2_type>(); arg2_type temp = arg2; (*temp)++; } TEST(ActionMacroTest, CanReferenceArgumentType) { Action<void(int, bool, int*)> a1 = IncrementArg2(); int n = 0; a1.Perform(std::make_tuple(5, false, &n)); EXPECT_EQ(1, n); } // Tests that the body of ACTION() can reference the argument tuple // via args_type and args. ACTION(Sum2) { StaticAssertTypeEq<std::tuple<int, char, int*>, args_type>(); args_type args_copy = args; return std::get<0>(args_copy) + std::get<1>(args_copy); } TEST(ActionMacroTest, CanReferenceArgumentTuple) { Action<int(int, char, int*)> a1 = Sum2(); int dummy = 0; EXPECT_EQ(11, a1.Perform(std::make_tuple(5, Char(6), &dummy))); } namespace { // Tests that the body of ACTION() can reference the mock function // type. int Dummy(bool flag) { return flag ? 1 : 0; } } // namespace ACTION(InvokeDummy) { StaticAssertTypeEq<int(bool), function_type>(); function_type* fp = &Dummy; return (*fp)(true); } TEST(ActionMacroTest, CanReferenceMockFunctionType) { Action<int(bool)> a1 = InvokeDummy(); EXPECT_EQ(1, a1.Perform(std::make_tuple(true))); EXPECT_EQ(1, a1.Perform(std::make_tuple(false))); } // Tests that the body of ACTION() can reference the mock function's // return type. ACTION(InvokeDummy2) { StaticAssertTypeEq<int, return_type>(); return_type result = Dummy(true); return result; } TEST(ActionMacroTest, CanReferenceMockFunctionReturnType) { Action<int(bool)> a1 = InvokeDummy2(); EXPECT_EQ(1, a1.Perform(std::make_tuple(true))); EXPECT_EQ(1, a1.Perform(std::make_tuple(false))); } // Tests that ACTION() works for arguments passed by const reference. ACTION(ReturnAddrOfConstBoolReferenceArg) { StaticAssertTypeEq<const bool&, arg1_type>(); return &arg1; } TEST(ActionMacroTest, WorksForConstReferenceArg) { Action<const bool*(int, const bool&)> a = ReturnAddrOfConstBoolReferenceArg(); const bool b = false; EXPECT_EQ(&b, a.Perform(std::tuple<int, const bool&>(0, b))); } // Tests that ACTION() works for arguments passed by non-const reference. ACTION(ReturnAddrOfIntReferenceArg) { StaticAssertTypeEq<int&, arg0_type>(); return &arg0; } TEST(ActionMacroTest, WorksForNonConstReferenceArg) { Action<int*(int&, bool, int)> a = ReturnAddrOfIntReferenceArg(); int n = 0; EXPECT_EQ(&n, a.Perform(std::tuple<int&, bool, int>(n, true, 1))); } // Tests that ACTION() can be used in a namespace. namespace action_test { ACTION(Sum) { return arg0 + arg1; } } // namespace action_test TEST(ActionMacroTest, WorksInNamespace) { Action<int(int, int)> a1 = action_test::Sum(); EXPECT_EQ(3, a1.Perform(std::make_tuple(1, 2))); } // Tests that the same ACTION definition works for mock functions with // different argument numbers. ACTION(PlusTwo) { return arg0 + 2; } TEST(ActionMacroTest, WorksForDifferentArgumentNumbers) { Action<int(int)> a1 = PlusTwo(); EXPECT_EQ(4, a1.Perform(std::make_tuple(2))); Action<double(float, void*)> a2 = PlusTwo(); int dummy; EXPECT_DOUBLE_EQ(6, a2.Perform(std::make_tuple(4.0f, &dummy))); } // Tests that ACTION_P can define a parameterized action. ACTION_P(Plus, n) { return arg0 + n; } TEST(ActionPMacroTest, DefinesParameterizedAction) { Action<int(int m, bool t)> a1 = Plus(9); EXPECT_EQ(10, a1.Perform(std::make_tuple(1, true))); } // Tests that the body of ACTION_P can reference the argument types // and the parameter type. ACTION_P(TypedPlus, n) { arg0_type t1 = arg0; n_type t2 = n; return t1 + t2; } TEST(ActionPMacroTest, CanReferenceArgumentAndParameterTypes) { Action<int(char m, bool t)> a1 = TypedPlus(9); EXPECT_EQ(10, a1.Perform(std::make_tuple(Char(1), true))); } // Tests that a parameterized action can be used in any mock function // whose type is compatible. TEST(ActionPMacroTest, WorksInCompatibleMockFunction) { Action<std::string(const std::string& s)> a1 = Plus("tail"); const std::string re = "re"; std::tuple<const std::string> dummy = std::make_tuple(re); EXPECT_EQ("retail", a1.Perform(dummy)); } // Tests that we can use ACTION*() to define actions overloaded on the // number of parameters. ACTION(OverloadedAction) { return arg0 ? arg1 : "hello"; } ACTION_P(OverloadedAction, default_value) { return arg0 ? arg1 : default_value; } ACTION_P2(OverloadedAction, true_value, false_value) { return arg0 ? true_value : false_value; } TEST(ActionMacroTest, CanDefineOverloadedActions) { using MyAction = Action<const char*(bool, const char*)>; const MyAction a1 = OverloadedAction(); EXPECT_STREQ("hello", a1.Perform(std::make_tuple(false, CharPtr("world")))); EXPECT_STREQ("world", a1.Perform(std::make_tuple(true, CharPtr("world")))); const MyAction a2 = OverloadedAction("hi"); EXPECT_STREQ("hi", a2.Perform(std::make_tuple(false, CharPtr("world")))); EXPECT_STREQ("world", a2.Perform(std::make_tuple(true, CharPtr("world")))); const MyAction a3 = OverloadedAction("hi", "you"); EXPECT_STREQ("hi", a3.Perform(std::make_tuple(true, CharPtr("world")))); EXPECT_STREQ("you", a3.Perform(std::make_tuple(false, CharPtr("world")))); } // Tests ACTION_Pn where n >= 3. ACTION_P3(Plus, m, n, k) { return arg0 + m + n + k; } TEST(ActionPnMacroTest, WorksFor3Parameters) { Action<double(int m, bool t)> a1 = Plus(100, 20, 3.4); EXPECT_DOUBLE_EQ(3123.4, a1.Perform(std::make_tuple(3000, true))); Action<std::string(const std::string& s)> a2 = Plus("tail", "-", ">"); const std::string re = "re"; std::tuple<const std::string> dummy = std::make_tuple(re); EXPECT_EQ("retail->", a2.Perform(dummy)); } ACTION_P4(Plus, p0, p1, p2, p3) { return arg0 + p0 + p1 + p2 + p3; } TEST(ActionPnMacroTest, WorksFor4Parameters) { Action<int(int)> a1 = Plus(1, 2, 3, 4); EXPECT_EQ(10 + 1 + 2 + 3 + 4, a1.Perform(std::make_tuple(10))); } ACTION_P5(Plus, p0, p1, p2, p3, p4) { return arg0 + p0 + p1 + p2 + p3 + p4; } TEST(ActionPnMacroTest, WorksFor5Parameters) { Action<int(int)> a1 = Plus(1, 2, 3, 4, 5); EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5, a1.Perform(std::make_tuple(10))); } ACTION_P6(Plus, p0, p1, p2, p3, p4, p5) { return arg0 + p0 + p1 + p2 + p3 + p4 + p5; } TEST(ActionPnMacroTest, WorksFor6Parameters) { Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6); EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6, a1.Perform(std::make_tuple(10))); } ACTION_P7(Plus, p0, p1, p2, p3, p4, p5, p6) { return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6; } TEST(ActionPnMacroTest, WorksFor7Parameters) { Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7); EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7, a1.Perform(std::make_tuple(10))); } ACTION_P8(Plus, p0, p1, p2, p3, p4, p5, p6, p7) { return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7; } TEST(ActionPnMacroTest, WorksFor8Parameters) { Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8); EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, a1.Perform(std::make_tuple(10))); } ACTION_P9(Plus, p0, p1, p2, p3, p4, p5, p6, p7, p8) { return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8; } TEST(ActionPnMacroTest, WorksFor9Parameters) { Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8, 9); EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9, a1.Perform(std::make_tuple(10))); } ACTION_P10(Plus, p0, p1, p2, p3, p4, p5, p6, p7, p8, last_param) { arg0_type t0 = arg0; last_param_type t9 = last_param; return t0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + t9; } TEST(ActionPnMacroTest, WorksFor10Parameters) { Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10, a1.Perform(std::make_tuple(10))); } // Tests that the action body can promote the parameter types. ACTION_P2(PadArgument, prefix, suffix) { // The following lines promote the two parameters to desired types. std::string prefix_str(prefix); char suffix_char = static_cast<char>(suffix); return prefix_str + arg0 + suffix_char; } TEST(ActionPnMacroTest, SimpleTypePromotion) { Action<std::string(const char*)> no_promo = PadArgument(std::string("foo"), 'r'); Action<std::string(const char*)> promo = PadArgument("foo", static_cast<int>('r')); EXPECT_EQ("foobar", no_promo.Perform(std::make_tuple(CharPtr("ba")))); EXPECT_EQ("foobar", promo.Perform(std::make_tuple(CharPtr("ba")))); } // Tests that we can partially restrict parameter types using a // straight-forward pattern. // Defines a generic action that doesn't restrict the types of its // parameters. ACTION_P3(ConcatImpl, a, b, c) { std::stringstream ss; ss << a << b << c; return ss.str(); } // Next, we try to restrict that either the first parameter is a // string, or the second parameter is an int. // Defines a partially specialized wrapper that restricts the first // parameter to std::string. template <typename T1, typename T2> // ConcatImplActionP3 is the class template ACTION_P3 uses to // implement ConcatImpl. We shouldn't change the name as this // pattern requires the user to use it directly. ConcatImplActionP3<std::string, T1, T2> Concat(const std::string& a, T1 b, T2 c) { GTEST_INTENTIONAL_CONST_COND_PUSH_() if (true) { GTEST_INTENTIONAL_CONST_COND_POP_() // This branch verifies that ConcatImpl() can be invoked without // explicit template arguments. return ConcatImpl(a, b, c); } else { // This branch verifies that ConcatImpl() can also be invoked with // explicit template arguments. It doesn't really need to be // executed as this is a compile-time verification. return ConcatImpl<std::string, T1, T2>(a, b, c); } } // Defines another partially specialized wrapper that restricts the // second parameter to int. template <typename T1, typename T2> ConcatImplActionP3<T1, int, T2> Concat(T1 a, int b, T2 c) { return ConcatImpl(a, b, c); } TEST(ActionPnMacroTest, CanPartiallyRestrictParameterTypes) { Action<const std::string()> a1 = Concat("Hello", "1", 2); EXPECT_EQ("Hello12", a1.Perform(std::make_tuple())); a1 = Concat(1, 2, 3); EXPECT_EQ("123", a1.Perform(std::make_tuple())); } // Verifies the type of an ACTION*. ACTION(DoFoo) {} ACTION_P(DoFoo, p) {} ACTION_P2(DoFoo, p0, p1) {} TEST(ActionPnMacroTest, TypesAreCorrect) { // DoFoo() must be assignable to a DoFooAction variable. DoFooAction a0 = DoFoo(); // DoFoo(1) must be assignable to a DoFooActionP variable. DoFooActionP<int> a1 = DoFoo(1); // DoFoo(p1, ..., pk) must be assignable to a DoFooActionPk // variable, and so on. DoFooActionP2<int, char> a2 = DoFoo(1, '2'); PlusActionP3<int, int, char> a3 = Plus(1, 2, '3'); PlusActionP4<int, int, int, char> a4 = Plus(1, 2, 3, '4'); PlusActionP5<int, int, int, int, char> a5 = Plus(1, 2, 3, 4, '5'); PlusActionP6<int, int, int, int, int, char> a6 = Plus(1, 2, 3, 4, 5, '6'); PlusActionP7<int, int, int, int, int, int, char> a7 = Plus(1, 2, 3, 4, 5, 6, '7'); PlusActionP8<int, int, int, int, int, int, int, char> a8 = Plus(1, 2, 3, 4, 5, 6, 7, '8'); PlusActionP9<int, int, int, int, int, int, int, int, char> a9 = Plus(1, 2, 3, 4, 5, 6, 7, 8, '9'); PlusActionP10<int, int, int, int, int, int, int, int, int, char> a10 = Plus(1, 2, 3, 4, 5, 6, 7, 8, 9, '0'); // Avoid "unused variable" warnings. (void)a0; (void)a1; (void)a2; (void)a3; (void)a4; (void)a5; (void)a6; (void)a7; (void)a8; (void)a9; (void)a10; } // Tests that an ACTION_P*() action can be explicitly instantiated // with reference-typed parameters. ACTION_P(Plus1, x) { return x; } ACTION_P2(Plus2, x, y) { return x + y; } ACTION_P3(Plus3, x, y, z) { return x + y + z; } ACTION_P10(Plus10, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9) { return a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9; } TEST(ActionPnMacroTest, CanExplicitlyInstantiateWithReferenceTypes) { int x = 1, y = 2, z = 3; const std::tuple<> empty = std::make_tuple(); Action<int()> a = Plus1<int&>(x); EXPECT_EQ(1, a.Perform(empty)); a = Plus2<const int&, int&>(x, y); EXPECT_EQ(3, a.Perform(empty)); a = Plus3<int&, const int&, int&>(x, y, z); EXPECT_EQ(6, a.Perform(empty)); int n[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; a = Plus10<const int&, int&, const int&, int&, const int&, int&, const int&, int&, const int&, int&>(n[0], n[1], n[2], n[3], n[4], n[5], n[6], n[7], n[8], n[9]); EXPECT_EQ(55, a.Perform(empty)); } class TenArgConstructorClass { public: TenArgConstructorClass(int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8, int a9, int a10) : value_(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) {} int value_; }; // Tests that ACTION_TEMPLATE works when there is no value parameter. ACTION_TEMPLATE(CreateNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_0_VALUE_PARAMS()) { return new T; } TEST(ActionTemplateTest, WorksWithoutValueParam) { const Action<int*()> a = CreateNew<int>(); int* p = a.Perform(std::make_tuple()); delete p; } // Tests that ACTION_TEMPLATE works when there are value parameters. ACTION_TEMPLATE(CreateNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_1_VALUE_PARAMS(a0)) { return new T(a0); } TEST(ActionTemplateTest, WorksWithValueParams) { const Action<int*()> a = CreateNew<int>(42); int* p = a.Perform(std::make_tuple()); EXPECT_EQ(42, *p); delete p; } // Tests that ACTION_TEMPLATE works for integral template parameters. ACTION_TEMPLATE(MyDeleteArg, HAS_1_TEMPLATE_PARAMS(int, k), AND_0_VALUE_PARAMS()) { delete std::get<k>(args); } // Resets a bool variable in the destructor. class BoolResetter { public: explicit BoolResetter(bool* value) : value_(value) {} ~BoolResetter() { *value_ = false; } private: bool* value_; }; TEST(ActionTemplateTest, WorksForIntegralTemplateParams) { const Action<void(int*, BoolResetter*)> a = MyDeleteArg<1>(); int n = 0; bool b = true; auto* resetter = new BoolResetter(&b); a.Perform(std::make_tuple(&n, resetter)); EXPECT_FALSE(b); // Verifies that resetter is deleted. } // Tests that ACTION_TEMPLATES works for template template parameters. ACTION_TEMPLATE(ReturnSmartPointer, HAS_1_TEMPLATE_PARAMS(template <typename Pointee> class, Pointer), AND_1_VALUE_PARAMS(pointee)) { return Pointer<pointee_type>(new pointee_type(pointee)); } TEST(ActionTemplateTest, WorksForTemplateTemplateParameters) { const Action<std::shared_ptr<int>()> a = ReturnSmartPointer<std::shared_ptr>(42); std::shared_ptr<int> p = a.Perform(std::make_tuple()); EXPECT_EQ(42, *p); } // Tests that ACTION_TEMPLATE works for 10 template parameters. template <typename T1, typename T2, typename T3, int k4, bool k5, unsigned int k6, typename T7, typename T8, typename T9> struct GiantTemplate { public: explicit GiantTemplate(int a_value) : value(a_value) {} int value; }; ACTION_TEMPLATE(ReturnGiant, HAS_10_TEMPLATE_PARAMS(typename, T1, typename, T2, typename, T3, int, k4, bool, k5, unsigned int, k6, class, T7, class, T8, class, T9, template <typename T> class, T10), AND_1_VALUE_PARAMS(value)) { return GiantTemplate<T10<T1>, T2, T3, k4, k5, k6, T7, T8, T9>(value); } TEST(ActionTemplateTest, WorksFor10TemplateParameters) { using Giant = GiantTemplate<std::shared_ptr<int>, bool, double, 5, true, 6, char, unsigned, int>; const Action<Giant()> a = ReturnGiant<int, bool, double, 5, true, 6, char, unsigned, int, std::shared_ptr>(42); Giant giant = a.Perform(std::make_tuple()); EXPECT_EQ(42, giant.value); } // Tests that ACTION_TEMPLATE works for 10 value parameters. ACTION_TEMPLATE(ReturnSum, HAS_1_TEMPLATE_PARAMS(typename, Number), AND_10_VALUE_PARAMS(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10)) { return static_cast<Number>(v1) + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10; } TEST(ActionTemplateTest, WorksFor10ValueParameters) { const Action<int()> a = ReturnSum<int>(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); EXPECT_EQ(55, a.Perform(std::make_tuple())); } // Tests that ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded // on the number of value parameters. ACTION(ReturnSum) { return 0; } ACTION_P(ReturnSum, x) { return x; } ACTION_TEMPLATE(ReturnSum, HAS_1_TEMPLATE_PARAMS(typename, Number), AND_2_VALUE_PARAMS(v1, v2)) { return static_cast<Number>(v1) + v2; } ACTION_TEMPLATE(ReturnSum, HAS_1_TEMPLATE_PARAMS(typename, Number), AND_3_VALUE_PARAMS(v1, v2, v3)) { return static_cast<Number>(v1) + v2 + v3; } ACTION_TEMPLATE(ReturnSum, HAS_2_TEMPLATE_PARAMS(typename, Number, int, k), AND_4_VALUE_PARAMS(v1, v2, v3, v4)) { return static_cast<Number>(v1) + v2 + v3 + v4 + k; } TEST(ActionTemplateTest, CanBeOverloadedOnNumberOfValueParameters) { const Action<int()> a0 = ReturnSum(); const Action<int()> a1 = ReturnSum(1); const Action<int()> a2 = ReturnSum<int>(1, 2); const Action<int()> a3 = ReturnSum<int>(1, 2, 3); const Action<int()> a4 = ReturnSum<int, 10000>(2000, 300, 40, 5); EXPECT_EQ(0, a0.Perform(std::make_tuple())); EXPECT_EQ(1, a1.Perform(std::make_tuple())); EXPECT_EQ(3, a2.Perform(std::make_tuple())); EXPECT_EQ(6, a3.Perform(std::make_tuple())); EXPECT_EQ(12345, a4.Perform(std::make_tuple())); } } // namespace gmock_more_actions_test } // namespace testing