# Kaleidoscope Plugin API Internals This document attempts to explain how the plugin system works internally, behind the scenes. We feel this is necessary, because there are some unorthodox solutions in play, which make the code incredibly hard to untangle. This is an unavoidable side-effect of employing a system that lets us use non-virtual functions, and save large amounts of RAM thereby. It would be a lot simpler without this feature, but alas, saving hundreds of bytes of RAM is something we felt is worth the complexity. Lets start at the top: ## `KALEIDOSCOPE_INIT_PLUGINS` ```c++ #define KALEIDOSCOPE_INIT_PLUGINS(...) _KALEIDOSCOPE_INIT_PLUGINS(__VA_ARGS__) ``` So far so good, this is pretty simple. The reason we use an indirection here is because this is in `Kaleidoscope.h`, and we do not want the complexity of the `_KALEIDOSCOPE_INIT_PLUGINS` macro here, nor do we want to move the macro to another header, because it belongs to `Kaleidoscope.h`. ## `_KALEIDOSCOPE_INIT_PLUGINS` ```c++ #define _KALEIDOSCOPE_INIT_PLUGINS(...) \ namespace kaleidoscope_internal { \ struct EventDispatcher { \ \ template \ static kaleidoscope::EventHandlerResult apply(Args__&&... hook_args) { \ \ kaleidoscope::EventHandlerResult result; \ MAP(_INLINE_EVENT_HANDLER_FOR_PLUGIN, __VA_ARGS__) \ \ return result; \ } \ }; \ \ } \ _FOR_EACH_EVENT_HANDLER(_REGISTER_EVENT_HANDLER) ``` This is where things get interesting. This macro does two things: - It creates `kaleidoscope_internal::EventDispatcher`, a class with a single method, `apply`. This is a templated method, the template argument is the method `apply` will call. Thus, `EventDispatcher::template apply` will resolve to a function that calls the `foo` method of each plugin we listed for `KALEIDOSCOPE_INIT_PLUGINS`. We'll see in a bit how this happens. - The other part creates overrides for the `Kaleidoscope::Hooks::` family of functions. These are wrappers around `EventDispatcher::template apply`. We have these so higher level code would not need to care about the implementation details, so that it can invoke the hooks as if they were ordinary functions. ## `_FOR_EACH_EVENT_HANDLER(_REGISTER_EVENT_HANDLER)` Lets look at `_FOR_EACH_EVENT_HANDLER` and `_REGISTER_EVENT_HANDLER` first, because that's easier to explain, and does not lead down another rabbit hole. ### `_REGISTER_EVENT_HANDLER` ```c++ #define _REGISTER_EVENT_HANDLER( \ HOOK_NAME, SHOULD_ABORT_ON_CONSUMED_EVENT, SIGNATURE, ARGS_LIST) \ \ namespace kaleidoscope_internal { \ \ struct EventHandler_##HOOK_NAME { \ \ static bool shouldAbortOnConsumedEvent() { \ return SHOULD_ABORT_ON_CONSUMED_EVENT; \ } \ \ template \ static kaleidoscope::EventHandlerResult \ call(Plugin__ &plugin, Args__&&... hook_args) { \ _VALIDATE_EVENT_HANDLER_SIGNATURE(HOOK_NAME, Plugin__) \ return plugin.HOOK_NAME(hook_args...); \ } \ }; \ \ } \ \ namespace kaleidoscope { \ \ EventHandlerResult Hooks::HOOK_NAME SIGNATURE { \ return kaleidoscope_internal::EventDispatcher::template \ apply \ ARGS_LIST; \ } \ \ } ``` This looks big and scary, but in practice, it isn't all that bad. Nevertheless, this is where the magic happens! We create two things: `EventHandler_SomeThing` and `Hooks::SomeThing`, the latter being a wrapper around the first, that uses `EventDispatcher::template apply<>` discussed above. Lets take `onSetup` as an example! For that, the above expands to: ```c++ namespace kaleidoscope_internal { struct EventHandler_onSetup { static bool shouldAbortOnConsumedEvent() { return false; } template static kaleidoscope::EventHandlerResult call(Plugin__ &plugin, Args__&&... hook_args) { return plugin.onSetup(hook_args...); } }; } namespace kaleidoscope { EventHandlerResult Hooks::onSetup() { return kaleidoscope_internal::EventDispatcher::template apply(); } } ``` This still looks scary... but please read a bit further, and it will all make sense! ### `_FOR_EACH_EVENT_HANDLER` This just evaluates its argument for each event handler supported by Kaleidoscope core. Very simple macro expansion, which we will not expand here, because that would take up a lot of space, and they all look the same (see above). ## `EventDispatcher` ```c++ namespace kaleidoscope_internal { struct EventDispatcher { template static kaleidoscope::EventHandlerResult apply(Args__&&... hook_args) { kaleidoscope::EventHandlerResult result; MAP(_INLINE_EVENT_HANDLER_FOR_PLUGIN, __VA_ARGS__) return result; } }; ``` This is where the other part of the magic happens, and we need to understand this to be able to make sense of `_REGISTER_EVENT_HANDLER` above. ### `_INLINE_EVENT_HANDLER_FOR_PLUGIN` This in isolation, is not very interesting, and is closely tied to `EventDispatcher`. The definition is here so we can look at it while we learn the details of `EventDispatcher` below. ```c++ #define _INLINE_EVENT_HANDLER_FOR_PLUGIN(PLUGIN) \ \ result = EventHandler__::call(PLUGIN, hook_args...); \ \ if (EventHandler__::shouldAbortOnConsumedEvent() && \ result == kaleidoscope::EventHandlerResult::EVENT_CONSUMED) { \ return result; \ } ``` ### Back to `EventDispatcher`... The `EventDispatcher` structure has a single method: `apply<>`, which needs an event handler as its template argument. What the macro does, is call the event handler given in the template argument for each and every initialised plugin. It's best explained with an example! Lets use two plugins, `SomePlugin` and `ExampleEffect`: ```c++ namespace kaleidoscope_internal { struct EventDispatcher { template static kaleidoscope::EventHandlerResult apply(Args__&&... hook_args) { kaleidoscope::EventHandlerResult result; result = EventHandler__::call(SomePlugin); if (EventHandler__::shouldAbortOnConsumedEvent() && result == kaleidoscope::EventHandlerResult::EVENT_CONSUMED) { return result; } result = EventHandler__::call(ExampleEffect); if (EventHandler__::shouldAbortOnConsumedEvent() && result == kaleidoscope::EventHandlerResult::EVENT_CONSUMED) { return result; } return result; } }; ``` See? It's unrolled! But how do we get from here to - say - calling the `onSetup()` method of the plugins? Why, by way of `EventDispatcher::template apply`! Lets see what happens when we do a call like that: ```c++ namespace kaleidoscope_internal { struct EventDispatcher { template static kaleidoscope::EventHandlerResult apply(Args__&&... hook_args) { kaleidoscope::EventHandlerResult result; result = EventHandler_onSetup::call(SomePlugin); if (EventHandler_onSetup::shouldAbortOnConsumedEvent() && result == kaleidoscope::EventHandlerResult::EVENT_CONSUMED) { return result; } result = EventHandler_onSetup::call(ExampleEffect); if (EventHandler_onSetup::shouldAbortOnConsumedEvent() && result == kaleidoscope::EventHandlerResult::EVENT_CONSUMED) { return result; } return result; } }; ``` Because we call `EventHandler_onSetup::call` with the plugin as the first argument, and because `call` is also a templated function, where the first argument is templated, we get a method that is polymorphic on its first argument. Meaning, for each and every plugin, we'll have a matching `EventHandler_onSetup::call`, that is tied to that plugin. *This* is the magic that lets us use non-virtual methods! ## Exploring what the compiler does Because all hooks are called via `kaleidoscope::Hooks::NAME`, let's explore how the compiler will optimize the code for `onSetup`, assuming we use two plugins, `SomePlugin` and `ExampleEffect`. Our entry point is this: ```c++ return kaleidoscope::Hooks::onSetup(); ``` `_REGISTER_EVENT_HANDLER` created `Hooks::onSetup()` for us: ```c++ EventHandlerResult kaleidoscope::Hooks::onSetup() { return kaleidoscope_internal::EventDispatcher::template apply(); } ``` If we inline the call to `EventDispatcher::template apply<>`, we end up with the following: ```c++ EventHandlerResult kaleidoscope::Hooks::onSetup() { kaleidoscope::EventHandlerResult result; result = EventHandler_onSetup::call(SomePlugin); if (EventHandler_onSetup::shouldAbortOnConsumedEvent() && result == kaleidoscope::EventHandlerResult::EVENT_CONSUMED) { return result; } result = EventHandler_onSetup::call(ExampleEffect); if (EventHandler_onSetup::shouldAbortOnConsumedEvent() && result == kaleidoscope::EventHandlerResult::EVENT_CONSUMED) { return result; } return result; } ``` This is starting to look human readable, isn't it? But we can go further, because `EventHandler::onSetup::call` and `EventHandler_onSetup::shouldAbortOnConsumedEvent` are evaluated at compile-time too! ```c++ EventHandlerResult kaleidoscope::Hooks::onSetup() { kaleidoscope::EventHandlerResult result; result = SomePlugin.onSetup(); if (false && result == kaleidoscope::EventHandlerResult::EVENT_CONSUMED) { return result; } result = ExampleEffect.onSetup(); if (false && result == kaleidoscope::EventHandlerResult::EVENT_CONSUMED) { return result; } return result; } ``` Which in turn, may be optimized further to something like the following: ```c++ EventHandlerResult kaleidoscope::Hooks::onSetup() { kaleidoscope::EventHandlerResult result; result = SomePlugin.onSetup(); result = ExampleEffect.onSetup(); return result; } ``` And this, is the end of the magic. This is roughly how much the code gets transformed *at compile time*, so that at run-time, none of this indirection is present. ## Summary As we can see, there is a lot going on behind the scenes, and a combination of template meta programming and pre-processor macros is used to accomplish our goal. But following the code path like we did above allows us to see what the compiler sees (more or less), and inlining all the things that are done compile-time gives us the final code, which is pretty simple by that point.